Contract Overview
Balance:
0 Ether
More Info
My Name Tag:
Not Available
[ Download CSV Export ]
Latest 25 internal transaction
[ Download CSV Export ]
Contract Name:
BalancerExternalTokenRouter
Compiler Version
v0.7.6+commit.7338295f
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMathUpgradeable { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT // solhint-disable-next-line compiler-version pragma solidity >=0.4.24 <0.8.0; import "../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../utils/ContextUpgradeable.sol"; import "./IERC20Upgradeable.sol"; import "../../math/SafeMathUpgradeable.sol"; import "../../proxy/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable { using SafeMathUpgradeable for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal initializer { __Context_init_unchained(); __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } uint256[44] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../proxy/Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./GyroRouter.sol"; import "./balancer/BPool.sol"; import "./Ownable.sol"; contract BalancerExternalTokenRouter is GyroRouter, Ownable { mapping(address => address[]) public pools; address[] public tokens; event UnderlyingTokensDeposited(address[] indexed bpAddresses, uint256[] indexed bpAmounts); function deposit(address[] memory _tokensIn, uint256[] memory _amountsIn) external override returns (address[] memory, uint256[] memory) { address[] memory _bpAddresses = new address[](_tokensIn.length); uint256[] memory _bpAmounts = new uint256[](_amountsIn.length); for (uint256 i = 0; i < _tokensIn.length; i++) { address token = _tokensIn[i]; uint256 amount = _amountsIn[i]; bool success = IERC20(token).transferFrom(msg.sender, address(this), amount); require(success, "failed to transfer tokens from sender to GryoRouter"); BPool pool = BPool(choosePoolToDeposit(token, amount)); uint256 poolAmountOut = pool.joinswapExternAmountIn(token, amount, 0); success = pool.transfer(msg.sender, poolAmountOut); require(success, "failed to transfer BPT to sender"); _bpAmounts[i] = poolAmountOut; _bpAddresses[i] = address(pool); } emit UnderlyingTokensDeposited(_bpAddresses, _bpAmounts); return (_bpAddresses, _bpAmounts); } function estimateDeposit(address[] memory _tokensIn, uint256[] memory _amountsIn) external view returns (address[] memory, uint256[] memory) { address[] memory _bpAddresses = new address[](_tokensIn.length); uint256[] memory _bpAmounts = new uint256[](_amountsIn.length); for (uint256 i = 0; i < _tokensIn.length; i++) { address token = _tokensIn[i]; uint256 amount = _amountsIn[i]; BPool pool = BPool(choosePoolToDeposit(token, amount)); uint256 poolAmountOut = calcPoolOutGivenSingleIn(pool, token, amount); _bpAddresses[i] = address(pool); _bpAmounts[i] = poolAmountOut; } return (_bpAddresses, _bpAmounts); } function estimateWithdraw(address[] memory _tokensOut, uint256[] memory _amountsOut) external view returns (address[] memory, uint256[] memory) { address[] memory _bpAddresses = new address[](_tokensOut.length); uint256[] memory _bpAmounts = new uint256[](_amountsOut.length); for (uint256 i = 0; i < _tokensOut.length; i++) { address token = _tokensOut[i]; uint256 amount = _amountsOut[i]; BPool pool = BPool(choosePoolToDeposit(token, amount)); uint256 poolAmountIn = calcPoolInGivenSingleOut(pool, token, amount); _bpAddresses[i] = address(pool); _bpAmounts[i] = poolAmountIn; } return (_bpAddresses, _bpAmounts); } function withdraw(address[] memory _tokensOut, uint256[] memory _amountsOut) external override returns (address[] memory, uint256[] memory) { for (uint256 i = 0; i < _tokensOut.length; i++) { address token = _tokensOut[i]; uint256 amount = _amountsOut[i]; BPool pool = BPool(choosePoolToWithdraw(token, amount)); uint256 poolAmountIn = calcPoolInGivenSingleOut(pool, token, amount); bool success = pool.transferFrom(msg.sender, address(this), poolAmountIn); require(success, "failed to transfer BPT from sender to GryoRouter"); pool.exitswapExternAmountOut(token, amount, poolAmountIn); success = IERC20(token).transfer(msg.sender, amount); require(success, "failed to transfer token to sender"); } return (_tokensOut, _amountsOut); } function calcPoolOutGivenSingleIn( BPool pool, address _token, uint256 _amount ) internal view returns (uint256) { uint256 tokenBalanceIn = pool.getBalance(_token); uint256 tokenWeightIn = pool.getDenormalizedWeight(_token); uint256 poolSupply = pool.totalSupply(); uint256 totalWeight = pool.getTotalDenormalizedWeight(); uint256 swapFee = pool.getSwapFee(); return pool.calcPoolOutGivenSingleIn( tokenBalanceIn, tokenWeightIn, poolSupply, totalWeight, _amount, swapFee ); } function calcPoolInGivenSingleOut( BPool pool, address _token, uint256 _amount ) internal view returns (uint256) { uint256 tokenBalanceOut = pool.getBalance(_token); uint256 tokenWeightOut = pool.getDenormalizedWeight(_token); uint256 poolSupply = pool.totalSupply(); uint256 totalWeight = pool.getTotalDenormalizedWeight(); uint256 swapFee = pool.getSwapFee(); return pool.calcPoolInGivenSingleOut( tokenBalanceOut, tokenWeightOut, poolSupply, totalWeight, _amount, swapFee ); } function choosePoolToDeposit(address _token, uint256 _amount) private view returns (address) { address[] storage candidates = pools[_token]; require(candidates.length > 0, "token not supported"); // TODO: choose better return candidates[_amount % candidates.length]; } function choosePoolToWithdraw(address _token, uint256 _amount) private view returns (address) { address[] storage candidates = pools[_token]; require(candidates.length > 0, "token not supported"); // TODO: choose better return candidates[_amount % candidates.length]; } function addPool(address _poolAddress) public onlyOwner { BPool pool = BPool(_poolAddress); require(pool.isFinalized(), "can only add finalized pools"); address[] memory poolTokens = pool.getFinalTokens(); for (uint256 i = 0; i < poolTokens.length; i++) { address tokenAddress = poolTokens[i]; address[] storage currentPools = pools[tokenAddress]; if (currentPools.length == 0) { tokens.push(tokenAddress); } bool exists = false; for (uint256 j = 0; j < currentPools.length; j++) { if (currentPools[j] == _poolAddress) { exists = true; break; } } if (!exists) { currentPools.push(_poolAddress); IERC20(tokenAddress).approve(_poolAddress, uint256(-1)); } } } function allTokens() external view returns (address[] memory) { address[] memory _tokens = new address[](tokens.length); for (uint256 i = 0; i < tokens.length; i++) { _tokens[i] = tokens[i]; } return _tokens; } } contract BalancerTokenRouter is GyroRouter, Ownable { function deposit(address[] memory _tokensIn, uint256[] memory _amountsIn) external pure override returns (address[] memory, uint256[] memory) { return (_tokensIn, _amountsIn); } function withdraw(address[] memory _tokensOut, uint256[] memory _amountsOut) external pure override returns (address[] memory, uint256[] memory) { return (_tokensOut, _amountsOut); } }
//SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; import "./abdk/ABDKMath64x64.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; library ExtendedMath { using ABDKMath64x64 for int128; using ABDKMath64x64 for uint256; using SafeMath for uint256; uint256 constant decimals = 18; uint256 constant decimalScale = 10**decimals; function powf(int128 _x, int128 _y) internal pure returns (int128 _xExpy) { // 2^(y * log2(x)) return _y.mul(_x.log_2()).exp_2(); } /** * @return value * (base ** exponent) */ function mulPow( uint256 value, uint256 base, uint256 exponent, uint256 decimal ) internal pure returns (uint256) { int128 basef = base.fromScaled(decimal); int128 expf = exponent.fromScaled(decimal); return powf(basef, expf).mulu(value); } function scaledMul( uint256 a, uint256 b, uint256 _decimals ) internal pure returns (uint256) { return a.mul(b).div(10**_decimals); } function scaledMul(uint256 a, uint256 b) internal pure returns (uint256) { return scaledMul(a, b, decimals); } function scaledDiv(uint256 a, uint256 b) internal pure returns (uint256) { return scaledDiv(a, b, decimals); } function scaledDiv( uint256 a, uint256 b, uint256 _decimals ) internal pure returns (uint256) { return a.mul(10**_decimals).div(b); } function scaledPow(uint256 base, uint256 exp) internal pure returns (uint256) { return scaledPow(base, exp, decimals); } function scaledPow( uint256 base, uint256 exp, uint256 _decimals ) internal pure returns (uint256) { uint256 result = 10**_decimals; while (exp > 0) { if (exp % 2 == 1) { result = scaledMul(result, base, _decimals); } exp /= 2; base = scaledMul(base, base, _decimals); } return result; } // function scaledPow( // uint256 base, // uint256 exp, // uint256 _decimals // ) internal pure returns (uint256) { // uint256 result = 1e18; // for (uint256 i = 0; i < exp; i++) { // result = scaledMul(result, base, _decimals); // } // return result; // } }
// SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "./GyroPriceOracle.sol"; import "./GyroRouter.sol"; import "./Ownable.sol"; import "./abdk/ABDKMath64x64.sol"; interface GyroFund is IERC20Upgradeable { event Mint(address minter, uint256 amount); event Redeem(address redeemer, uint256 amount); function mint( address[] memory _tokensIn, uint256[] memory _amountsIn, uint256 _minGyroMinted ) external returns (uint256); function redeem( address[] memory _BPTokensOut, uint256[] memory _amountsOut, uint256 _maxGyroRedeemed ) external returns (uint256); /** * Takes in the same parameters as mint and returns whether the * mint will succeed or not as well as the estimated mint amount * @param _BPTokensIn addresses of the input balancer pool tokens * @param _amountsIn amounts of the input balancer pool tokens * @param _minGyroMinted mininum amount of gyro to mint * @return errorCode of 0 is no error happens or a value described in errors.json */ function mintChecksPass( address[] memory _BPTokensIn, uint256[] memory _amountsIn, uint256 _minGyroMinted ) external view returns (uint256 errorCode, uint256 estimatedAmount); function redeemChecksPass( address[] memory _BPTokensOut, uint256[] memory _amountsOut, uint256 _maxGyroRedeemed ) external view returns (uint256 errorCode, uint256 estimatedAmount); function getReserveValues() external view returns ( uint256 errorCode, address[] memory BPTokenAddresses, uint256[] memory BPReserveDollarValues ); } contract GyroFundV1 is GyroFund, Ownable, ERC20Upgradeable { using ExtendedMath for int128; using ABDKMath64x64 for uint256; using ABDKMath64x64 for int128; using SafeMath for uint256; using ExtendedMath for uint256; GyroPriceOracle public gyroPriceOracle; GyroRouter public gyroRouter; PriceOracle public priceOracle; struct TokenProperties { address oracleAddress; string tokenSymbol; uint16 tokenIndex; } struct PoolProperties { address poolAddress; uint256 initialPoolWeight; uint256 initialPoolPrice; } struct PoolStatus { bool _allPoolsHealthy; bool _allPoolsWithinEpsilon; bool[] _inputPoolHealth; bool[] _poolsWithinEpsilon; } struct Weights { uint256[] _idealWeights; uint256[] _currentWeights; uint256[] _hypotheticalWeights; uint256 _nav; uint256 _dollarValue; uint256 _totalPortfolioValue; uint256[] _zeroArray; uint256 gyroAmount; } struct FlowLogger { uint256 inflowHistory; uint256 outflowHistory; uint256 currentBlock; uint256 lastSeenBlock; } PoolProperties[] public poolProperties; mapping(address => TokenProperties) _tokenAddressToProperties; mapping(address => bool) _checkPoolIsValid; mapping(address => bool) _checkIsStablecoin; address[] underlyingTokenAddresses; uint256 public portfolioWeightEpsilon; uint256 lastSeenBlock; uint256 inflowHistory; uint256 outflowHistory; uint256 memoryParam; uint256 constant WOULD_UNBALANCE_GYROSCOPE = 1; uint256 constant TOO_MUCH_SLIPPAGE = 2; function initialize( uint256 _portfolioWeightEpsilon, address _priceOracleAddress, address _routerAddress, uint256 _memoryParam ) public initializer { __ERC20_init("Gyro Dollar", "GYD"); gyroPriceOracle = GyroPriceOracle(_priceOracleAddress); gyroRouter = GyroRouter(_routerAddress); lastSeenBlock = block.number; memoryParam = _memoryParam; portfolioWeightEpsilon = _portfolioWeightEpsilon; } function addToken( address tokenAddress, address oracleAddress, bool isStable ) external onlyOwner { for (uint256 i = 0; i < underlyingTokenAddresses.length; i++) { require(underlyingTokenAddresses[i] != tokenAddress, "this token already exists"); } _checkIsStablecoin[tokenAddress] = isStable; string memory tokenSymbol = ERC20(tokenAddress).symbol(); _tokenAddressToProperties[tokenAddress] = TokenProperties({ oracleAddress: oracleAddress, tokenSymbol: tokenSymbol, tokenIndex: uint16(underlyingTokenAddresses.length) }); underlyingTokenAddresses.push(tokenAddress); } function addPool(address _bpoolAddress, uint256 _initialPoolWeight) external onlyOwner { // check we do not already have this pool for (uint256 i = 0; i < poolProperties.length; i++) { require(poolProperties[i].poolAddress != _bpoolAddress, "this pool already exists"); } BPool _bPool = BPool(_bpoolAddress); _checkPoolIsValid[_bpoolAddress] = true; // get the addresses of the underlying tokens address[] memory _bPoolUnderlyingTokens = _bPool.getFinalTokens(); // fill the underlying token prices array uint256[] memory _bPoolUnderlyingTokenPrices = new uint256[](_bPoolUnderlyingTokens.length); for (uint256 i = 0; i < _bPoolUnderlyingTokens.length; i++) { address tokenAddress = _bPoolUnderlyingTokens[i]; string memory tokenSymbol = ERC20(tokenAddress).symbol(); _bPoolUnderlyingTokenPrices[i] = getPrice(tokenAddress, tokenSymbol); } // Calculate BPT price for the pool uint256 initialPoolPrice = gyroPriceOracle.getBPTPrice(_bpoolAddress, _bPoolUnderlyingTokenPrices); poolProperties.push( PoolProperties({ poolAddress: _bpoolAddress, initialPoolWeight: _initialPoolWeight, initialPoolPrice: initialPoolPrice }) ); } function calculateImpliedPoolWeights(uint256[] memory _BPTPrices) internal view returns (uint256[] memory) { // order of _BPTPrices must be same as order of poolProperties uint256[] memory _newWeights = new uint256[](_BPTPrices.length); uint256[] memory _weightedReturns = new uint256[](_BPTPrices.length); uint256[] memory _initPoolPrices = new uint256[](_BPTPrices.length); uint256[] memory _initWeights = new uint256[](_BPTPrices.length); for (uint256 i = 0; i < poolProperties.length; i++) { _initPoolPrices[i] = poolProperties[i].initialPoolPrice; _initWeights[i] = poolProperties[i].initialPoolWeight; } for (uint256 i = 0; i < _BPTPrices.length; i++) { _weightedReturns[i] = _BPTPrices[i].scaledDiv(_initPoolPrices[i]).scaledMul( _initWeights[i] ); } uint256 _returnsSum = 0; for (uint256 i = 0; i < _BPTPrices.length; i++) { _returnsSum = _returnsSum.add(_weightedReturns[i]); } for (uint256 i = 0; i < _BPTPrices.length; i++) { _newWeights[i] = _weightedReturns[i].scaledDiv(_returnsSum); } return _newWeights; } function nav(uint256 _totalPortfolioValue) internal view returns (uint256 _nav) { uint256 _totalSupply = totalSupply(); if (_totalSupply > 0) { _nav = _totalPortfolioValue.scaledDiv(totalSupply()); } else { _nav = 1e18; } return _nav; } function calculatePortfolioWeights(uint256[] memory _BPTAmounts, uint256[] memory _BPTPrices) internal pure returns (uint256[] memory, uint256) { uint256[] memory _weights = new uint256[](_BPTPrices.length); uint256 _totalPortfolioValue = 0; for (uint256 i = 0; i < _BPTAmounts.length; i++) { _totalPortfolioValue = _totalPortfolioValue.add( _BPTAmounts[i].scaledMul(_BPTPrices[i]) ); } if (_totalPortfolioValue == 0) { return (_weights, _totalPortfolioValue); } for (uint256 i = 0; i < _BPTAmounts.length; i++) { _weights[i] = _BPTAmounts[i].scaledMul(_BPTPrices[i]).scaledDiv(_totalPortfolioValue); } return (_weights, _totalPortfolioValue); } function checkStablecoinHealth(uint256 stablecoinPrice, address stablecoinAddress) internal view returns (bool) { // TODO: revisit //Price bool _stablecoinHealthy = true; uint256 decimals = ERC20(stablecoinAddress).decimals(); uint256 maxDeviation = 5 * 10**(decimals - 2); uint256 idealPrice = 10**decimals; if (stablecoinPrice >= idealPrice + maxDeviation) { _stablecoinHealthy = false; } else if (stablecoinPrice <= idealPrice - maxDeviation) { _stablecoinHealthy = false; } //Volume (to do) return _stablecoinHealthy; } function absValueSub(uint256 _number1, uint256 _number2) internal pure returns (uint256) { if (_number1 >= _number2) { return _number1.sub(_number2); } else { return _number2.sub(_number1); } } function getPrice(address _token, string memory _tokenSymbol) internal view returns (uint256) { return PriceOracle(_tokenAddressToProperties[_token].oracleAddress).getPrice(_tokenSymbol); } function bytes32ToString(bytes32 x) private pure returns (string memory) { bytes memory bytesString = new bytes(32); uint256 charCount = 0; for (uint256 j = 0; j < 32; j++) { bytes1 char = bytes1(bytes32(uint256(x) * 2**(8 * j))); if (char != 0) { bytesString[charCount] = char; charCount++; } } bytes memory bytesStringTrimmed = new bytes(charCount); for (uint256 j = 0; j < charCount; j++) { bytesStringTrimmed[j] = bytesString[j]; } return string(bytesStringTrimmed); } function getAllTokenPrices() public view returns (uint256[] memory) { uint256[] memory _allUnderlyingPrices = new uint256[](underlyingTokenAddresses.length); for (uint256 i = 0; i < underlyingTokenAddresses.length; i++) { address _tokenAddress = underlyingTokenAddresses[i]; string memory _tokenSymbol = _tokenAddressToProperties[underlyingTokenAddresses[i]].tokenSymbol; uint256 _tokenPrice = getPrice(_tokenAddress, _tokenSymbol); _allUnderlyingPrices[i] = _tokenPrice; } return _allUnderlyingPrices; } function mintTest(address[] memory _BPTokensIn, uint256[] memory _amountsIn) public onlyOwner returns (uint256) { for (uint256 i = 0; i < _BPTokensIn.length; i++) { bool success = ERC20(_BPTokensIn[i]).transferFrom(msg.sender, address(this), _amountsIn[i]); require(success, "failed to transfer tokens, check allowance"); } uint256[] memory _allUnderlyingPrices = getAllTokenPrices(); uint256[] memory _currentBPTPrices = calculateAllPoolPrices(_allUnderlyingPrices); uint256 _dollarValue = 0; for (uint256 i = 0; i < _BPTokensIn.length; i++) { _dollarValue = _dollarValue.add(_amountsIn[i].scaledMul(_currentBPTPrices[i])); } uint256 _gyroToMint = gyroPriceOracle.getAmountToMint(_dollarValue, 0, 1e18); _mint(msg.sender, _gyroToMint); return _gyroToMint; } function calculateAllPoolPrices(uint256[] memory _allUnderlyingPrices) public view returns (uint256[] memory) { uint256[] memory _currentBPTPrices = new uint256[](poolProperties.length); // Calculate BPT prices for all pools for (uint256 i = 0; i < poolProperties.length; i++) { BPool _bPool = BPool(poolProperties[i].poolAddress); address[] memory _bPoolUnderlyingTokens = _bPool.getFinalTokens(); //For each pool fill the underlying token prices array uint256[] memory _bPoolUnderlyingTokenPrices = new uint256[](underlyingTokenAddresses.length); for (uint256 j = 0; j < _bPoolUnderlyingTokens.length; j++) { _bPoolUnderlyingTokenPrices[j] = _allUnderlyingPrices[ _tokenAddressToProperties[_bPoolUnderlyingTokens[j]].tokenIndex ]; } // Calculate BPT price for the pool _currentBPTPrices[i] = gyroPriceOracle.getBPTPrice( poolProperties[i].poolAddress, _bPoolUnderlyingTokenPrices ); } return _currentBPTPrices; } function poolHealthHelper(uint256[] memory _allUnderlyingPrices, uint256 _poolIndex) internal view returns (bool) { bool _poolHealthy = true; BPool _bPool = BPool(poolProperties[_poolIndex].poolAddress); address[] memory _bPoolUnderlyingTokens = _bPool.getFinalTokens(); //Go through the underlying tokens within the pool for (uint256 j = 0; j < _bPoolUnderlyingTokens.length; j++) { if (_checkIsStablecoin[_bPoolUnderlyingTokens[j]]) { uint256 _stablecoinPrice = _allUnderlyingPrices[ _tokenAddressToProperties[_bPoolUnderlyingTokens[j]].tokenIndex ]; if (!checkStablecoinHealth(_stablecoinPrice, _bPoolUnderlyingTokens[j])) { _poolHealthy = false; break; } } } return _poolHealthy; } function checkPoolsWithinEpsilon( address[] memory _BPTokensIn, uint256[] memory _hypotheticalWeights, uint256[] memory _idealWeights ) internal view returns (bool, bool[] memory) { bool _allPoolsWithinEpsilon = true; bool[] memory _poolsWithinEpsilon = new bool[](_BPTokensIn.length); for (uint256 i = 0; i < _BPTokensIn.length; i++) { // Check 1: check whether hypothetical weight will be within epsilon _poolsWithinEpsilon[i] = true; if (_hypotheticalWeights[i] >= _idealWeights[i].add(portfolioWeightEpsilon)) { _allPoolsWithinEpsilon = false; _poolsWithinEpsilon[i] = false; } else if (_hypotheticalWeights[i].add(portfolioWeightEpsilon) <= _idealWeights[i]) { _allPoolsWithinEpsilon = false; _poolsWithinEpsilon[i] = false; } } return (_allPoolsWithinEpsilon, _poolsWithinEpsilon); } function checkAllPoolsHealthy( address[] memory _BPTokensIn, uint256[] memory _hypotheticalWeights, uint256[] memory _idealWeights, uint256[] memory _allUnderlyingPrices ) internal view returns ( bool, bool, bool[] memory, bool[] memory ) { // Check safety of input tokens bool _allPoolsWithinEpsilon; bool[] memory _poolsWithinEpsilon = new bool[](_BPTokensIn.length); bool[] memory _inputPoolHealth = new bool[](_BPTokensIn.length); bool _allPoolsHealthy = true; (_allPoolsWithinEpsilon, _poolsWithinEpsilon) = checkPoolsWithinEpsilon( _BPTokensIn, _hypotheticalWeights, _idealWeights ); for (uint256 i = 0; i < _BPTokensIn.length; i++) { _inputPoolHealth[i] = poolHealthHelper(_allUnderlyingPrices, i); _allPoolsHealthy = _allPoolsHealthy && _inputPoolHealth[i]; } return (_allPoolsHealthy, _allPoolsWithinEpsilon, _inputPoolHealth, _poolsWithinEpsilon); } function safeToMintOutsideEpsilon( address[] memory _BPTokensIn, bool[] memory _inputPoolHealth, uint256[] memory _inputBPTWeights, uint256[] memory _idealWeights, uint256[] memory _hypotheticalWeights, uint256[] memory _currentWeights, bool[] memory _poolsWithinEpsilon ) internal pure returns (bool _anyCheckFail) { //Check that amount above epsilon is decreasing //Check that unhealthy pools have input weight below ideal weight //If both true, then mint //note: should always be able to mint at the ideal weights! _anyCheckFail = false; for (uint256 i; i < _BPTokensIn.length; i++) { if (!_inputPoolHealth[i]) { if (_inputBPTWeights[i] > _idealWeights[i]) { _anyCheckFail = true; break; } } if (!_poolsWithinEpsilon[i]) { // check if _hypotheticalWeights[i] is closer to _idealWeights[i] than _currentWeights[i] uint256 _distanceHypotheticalToIdeal = absValueSub(_hypotheticalWeights[i], _idealWeights[i]); uint256 _distanceCurrentToIdeal = absValueSub(_currentWeights[i], _idealWeights[i]); if (_distanceHypotheticalToIdeal >= _distanceCurrentToIdeal) { _anyCheckFail = true; break; } } } if (!_anyCheckFail) { return true; } } function checkBPTokenOrder(address[] memory _BPTokensIn) internal view returns (bool _correct) { require( _BPTokensIn.length == poolProperties.length, "bptokens do not have the correct number of addreses" ); _correct = true; for (uint256 i = 0; i < poolProperties.length; i++) { if (poolProperties[i].poolAddress != _BPTokensIn[i]) { _correct = false; break; } } return _correct; } function checkUnhealthyMovesToIdeal( address[] memory _BPTokensIn, bool[] memory _inputPoolHealth, uint256[] memory _inputBPTWeights, uint256[] memory _idealWeights ) internal pure returns (bool _launch) { bool _unhealthyMovesTowardIdeal = true; for (uint256 i; i < _BPTokensIn.length; i++) { if (!_inputPoolHealth[i]) { if (_inputBPTWeights[i] > _idealWeights[i]) { _unhealthyMovesTowardIdeal = false; break; } } } if (_unhealthyMovesTowardIdeal) { _launch = true; } } function safeToMint( address[] memory _BPTokensIn, uint256[] memory _hypotheticalWeights, uint256[] memory _idealWeights, uint256[] memory _allUnderlyingPrices, uint256[] memory _amountsIn, uint256[] memory _currentBPTPrices, uint256[] memory _currentWeights ) internal view returns (bool _launch) { _launch = false; PoolStatus memory poolStatus; ( poolStatus._allPoolsHealthy, poolStatus._allPoolsWithinEpsilon, poolStatus._inputPoolHealth, poolStatus._poolsWithinEpsilon ) = checkAllPoolsHealthy( _BPTokensIn, _hypotheticalWeights, _idealWeights, _allUnderlyingPrices ); // if check 1 succeeds and all pools healthy, then proceed with minting if (poolStatus._allPoolsHealthy) { if (poolStatus._allPoolsWithinEpsilon) { _launch = true; } } else { // calculate proportional values of assets user wants to pay with (uint256[] memory _inputBPTWeights, uint256 _totalPortfolioValue) = calculatePortfolioWeights(_amountsIn, _currentBPTPrices); if (_totalPortfolioValue == 0) { _inputBPTWeights = _idealWeights; } //Check that unhealthy pools have input weight below ideal weight. If true, mint if (poolStatus._allPoolsWithinEpsilon) { _launch = checkUnhealthyMovesToIdeal( _BPTokensIn, poolStatus._inputPoolHealth, _inputBPTWeights, _idealWeights ); } //Outside of the epsilon boundary else { _launch = safeToMintOutsideEpsilon( _BPTokensIn, poolStatus._inputPoolHealth, _inputBPTWeights, _idealWeights, _hypotheticalWeights, _currentWeights, poolStatus._poolsWithinEpsilon ); } } return _launch; } function safeToRedeem( address[] memory _BPTokensOut, uint256[] memory _hypotheticalWeights, uint256[] memory _idealWeights, uint256[] memory _currentWeights ) internal view returns (bool) { bool _launch = false; bool _allPoolsWithinEpsilon; bool[] memory _poolsWithinEpsilon = new bool[](_BPTokensOut.length); (_allPoolsWithinEpsilon, _poolsWithinEpsilon) = checkPoolsWithinEpsilon( _BPTokensOut, _hypotheticalWeights, _idealWeights ); if (_allPoolsWithinEpsilon) { _launch = true; return _launch; } // check if weights that are beyond epsilon boundary are closer to ideal than current weights bool _checkFail = false; for (uint256 i; i < _BPTokensOut.length; i++) { if (!_poolsWithinEpsilon[i]) { // check if _hypotheticalWeights[i] is closer to _idealWeights[i] than _currentWeights[i] uint256 _distanceHypotheticalToIdeal = absValueSub(_hypotheticalWeights[i], _idealWeights[i]); uint256 _distanceCurrentToIdeal = absValueSub(_currentWeights[i], _idealWeights[i]); if (_distanceHypotheticalToIdeal >= _distanceCurrentToIdeal) { _checkFail = true; break; } } } if (!_checkFail) { _launch = true; } return _launch; } function calculateAllWeights( uint256[] memory _currentBPTPrices, address[] memory _BPTokens, uint256[] memory _amountsIn, uint256[] memory _amountsOut ) internal view returns ( uint256[] memory _idealWeights, uint256[] memory _currentWeights, uint256[] memory _hypotheticalWeights, uint256 _nav, uint256 _totalPortfolioValue ) { //Calculate the up to date ideal portfolio weights _idealWeights = calculateImpliedPoolWeights(_currentBPTPrices); //Calculate the hypothetical weights if the new BPT tokens were added uint256[] memory _BPTNewAmounts = new uint256[](_BPTokens.length); uint256[] memory _BPTCurrentAmounts = new uint256[](_BPTokens.length); for (uint256 i = 0; i < _BPTokens.length; i++) { BPool _bPool = BPool(_BPTokens[i]); _BPTCurrentAmounts[i] = _bPool.balanceOf(address(this)); _BPTNewAmounts[i] = _BPTCurrentAmounts[i].add(_amountsIn[i]).sub(_amountsOut[i]); } (_currentWeights, _totalPortfolioValue) = calculatePortfolioWeights( _BPTCurrentAmounts, _currentBPTPrices ); if (_totalPortfolioValue == 0) { _currentWeights = _idealWeights; } _nav = nav(_totalPortfolioValue); (_hypotheticalWeights, ) = calculatePortfolioWeights(_BPTNewAmounts, _currentBPTPrices); return (_idealWeights, _currentWeights, _hypotheticalWeights, _nav, _totalPortfolioValue); } //_amountsIn in should have a zero index if nothing has been submitted for a particular token // _BPTokensIn and _amountsIn should have same indexes as poolProperties function mint( address[] memory _BPTokensIn, uint256[] memory _amountsIn, uint256 _minGyroMinted ) public override returns (uint256 amountToMint) { (uint256 errorCode, Weights memory weights, FlowLogger memory flowLogger) = mintChecksPassInternal(_BPTokensIn, _amountsIn, _minGyroMinted); require(errorCode == 0, errorCodeToString(errorCode)); for (uint256 i = 0; i < _BPTokensIn.length; i++) { bool success = ERC20(_BPTokensIn[i]).transferFrom(msg.sender, address(this), _amountsIn[i]); require(success, "failed to transfer tokens, check allowance"); } amountToMint = weights.gyroAmount; _mint(msg.sender, amountToMint); finalizeFlowLogger( flowLogger.inflowHistory, flowLogger.outflowHistory, weights.gyroAmount, 0, flowLogger.currentBlock, flowLogger.lastSeenBlock ); emit Mint(msg.sender, amountToMint); return amountToMint; } function mintChecksPass( address[] memory _BPTokensIn, uint256[] memory _amountsIn, uint256 _minGyroMinted ) public view override returns (uint256 errorCode, uint256 estimatedMint) { (uint256 _errorCode, Weights memory weights, ) = mintChecksPassInternal(_BPTokensIn, _amountsIn, _minGyroMinted); return (_errorCode, weights.gyroAmount); } function getReserveValues() public view override returns ( uint256, address[] memory, uint256[] memory ) { address[] memory _BPTokens = new address[](poolProperties.length); uint256[] memory _zeroAmounts = new uint256[](poolProperties.length); for (uint256 i = 0; i < poolProperties.length; i++) { _BPTokens[i] = poolProperties[i].poolAddress; } (uint256 _errorCode, Weights memory weights, ) = mintChecksPassInternal(_BPTokens, _zeroAmounts, uint256(0)); uint256[] memory _BPReserveDollarValues = new uint256[](_BPTokens.length); for (uint256 i = 0; i < _BPTokens.length; i++) { _BPReserveDollarValues[i] = weights._currentWeights[i].scaledMul( weights._totalPortfolioValue ); } return (_errorCode, _BPTokens, _BPReserveDollarValues); } function mintChecksPassInternal( address[] memory _BPTokensIn, uint256[] memory _amountsIn, uint256 _minGyroMinted ) internal view returns ( uint256 errorCode, Weights memory weights, FlowLogger memory flowLogger ) { require( _BPTokensIn.length == _amountsIn.length, "tokensIn and valuesIn should have the same number of elements" ); //Filter 1: Require that the tokens are supported and in correct order bool _orderCorrect = checkBPTokenOrder(_BPTokensIn); require(_orderCorrect, "Input tokens in wrong order or contains invalid tokens"); uint256[] memory _allUnderlyingPrices = getAllTokenPrices(); uint256[] memory _currentBPTPrices = calculateAllPoolPrices(_allUnderlyingPrices); weights._zeroArray = new uint256[](_BPTokensIn.length); for (uint256 i = 0; i < _BPTokensIn.length; i++) { weights._zeroArray[i] = 0; } ( weights._idealWeights, weights._currentWeights, weights._hypotheticalWeights, weights._nav, weights._totalPortfolioValue ) = calculateAllWeights(_currentBPTPrices, _BPTokensIn, _amountsIn, weights._zeroArray); bool _safeToMint = safeToMint( _BPTokensIn, weights._hypotheticalWeights, weights._idealWeights, _allUnderlyingPrices, _amountsIn, _currentBPTPrices, weights._currentWeights ); if (!_safeToMint) { errorCode |= WOULD_UNBALANCE_GYROSCOPE; } weights._dollarValue = 0; for (uint256 i = 0; i < _BPTokensIn.length; i++) { weights._dollarValue = weights._dollarValue.add( _amountsIn[i].scaledMul(_currentBPTPrices[i]) ); } flowLogger = initializeFlowLogger(); weights.gyroAmount = gyroPriceOracle.getAmountToMint( weights._dollarValue, flowLogger.inflowHistory, weights._nav ); if (weights.gyroAmount < _minGyroMinted) { errorCode |= TOO_MUCH_SLIPPAGE; } return (errorCode, weights, flowLogger); } function redeemChecksPass( address[] memory _BPTokensOut, uint256[] memory _amountsOut, uint256 _maxGyroRedeemed ) public view override returns (uint256 errorCode, uint256 estimatedAmount) { (uint256 _errorCode, Weights memory weights, ) = redeemChecksPassInternal(_BPTokensOut, _amountsOut, _maxGyroRedeemed); return (_errorCode, weights.gyroAmount); } function redeemChecksPassInternal( address[] memory _BPTokensOut, uint256[] memory _amountsOut, uint256 _maxGyroRedeemed ) internal view returns ( uint256 errorCode, Weights memory weights, FlowLogger memory flowLogger ) { require( _BPTokensOut.length == _amountsOut.length, "tokensIn and valuesIn should have the same number of elements" ); //Filter 1: Require that the tokens are supported and in correct order require( checkBPTokenOrder(_BPTokensOut), "Input tokens in wrong order or contains invalid tokens" ); weights._zeroArray = new uint256[](_BPTokensOut.length); for (uint256 i = 0; i < _BPTokensOut.length; i++) { weights._zeroArray[i] = 0; } uint256[] memory _allUnderlyingPrices = getAllTokenPrices(); uint256[] memory _currentBPTPrices = calculateAllPoolPrices(_allUnderlyingPrices); ( weights._idealWeights, weights._currentWeights, weights._hypotheticalWeights, weights._nav, weights._totalPortfolioValue ) = calculateAllWeights(_currentBPTPrices, _BPTokensOut, weights._zeroArray, _amountsOut); bool _safeToRedeem = safeToRedeem( _BPTokensOut, weights._hypotheticalWeights, weights._idealWeights, weights._currentWeights ); if (!_safeToRedeem) { errorCode |= WOULD_UNBALANCE_GYROSCOPE; } weights._dollarValue = 0; for (uint256 i = 0; i < _BPTokensOut.length; i++) { weights._dollarValue = weights._dollarValue.add( _amountsOut[i].scaledMul(_currentBPTPrices[i]) ); } flowLogger = initializeFlowLogger(); weights.gyroAmount = gyroPriceOracle.getAmountToRedeem( weights._dollarValue, flowLogger.outflowHistory, weights._nav ); if (weights.gyroAmount > _maxGyroRedeemed) { errorCode |= TOO_MUCH_SLIPPAGE; } return (errorCode, weights, flowLogger); } function redeem( address[] memory _BPTokensOut, uint256[] memory _amountsOut, uint256 _maxGyroRedeemed ) public override returns (uint256 _gyroRedeemed) { (uint256 errorCode, Weights memory weights, FlowLogger memory flowLogger) = redeemChecksPassInternal(_BPTokensOut, _amountsOut, _maxGyroRedeemed); require(errorCode == 0, errorCodeToString(errorCode)); _gyroRedeemed = weights.gyroAmount; _burn(msg.sender, _gyroRedeemed); gyroRouter.withdraw(_BPTokensOut, _amountsOut); for (uint256 i = 0; i < _amountsOut.length; i++) { bool success = ERC20(_BPTokensOut[i]).transferFrom(address(this), msg.sender, _amountsOut[i]); require(success, "failed to transfer tokens"); } emit Redeem(msg.sender, _gyroRedeemed); finalizeFlowLogger( flowLogger.inflowHistory, flowLogger.outflowHistory, 0, _gyroRedeemed, flowLogger.currentBlock, flowLogger.lastSeenBlock ); return _gyroRedeemed; } function initializeFlowLogger() internal view returns (FlowLogger memory flowLogger) { flowLogger.lastSeenBlock = lastSeenBlock; flowLogger.currentBlock = block.number; flowLogger.inflowHistory = inflowHistory; flowLogger.outflowHistory = outflowHistory; uint256 _memoryParam = memoryParam; if (flowLogger.lastSeenBlock < flowLogger.currentBlock) { flowLogger.inflowHistory = flowLogger.inflowHistory.scaledMul( _memoryParam.scaledPow(flowLogger.currentBlock.sub(flowLogger.lastSeenBlock)) ); flowLogger.outflowHistory = flowLogger.outflowHistory.scaledMul( _memoryParam.scaledPow(flowLogger.currentBlock.sub(flowLogger.lastSeenBlock)) ); } return flowLogger; } function finalizeFlowLogger( uint256 _inflowHistory, uint256 _outflowHistory, uint256 _gyroMinted, uint256 _gyroRedeemed, uint256 _currentBlock, uint256 _lastSeenBlock ) internal { if (_gyroMinted > 0) { inflowHistory = _inflowHistory.add(_gyroMinted); } if (_gyroRedeemed > 0) { outflowHistory = _outflowHistory.add(_gyroRedeemed); } if (_lastSeenBlock < _currentBlock) { lastSeenBlock = _currentBlock; } } function poolAddresses() public view returns (address[] memory) { address[] memory _addresses = new address[](poolProperties.length); for (uint256 i = 0; i < poolProperties.length; i++) { _addresses[i] = poolProperties[i].poolAddress; } return _addresses; } function getUnderlyingTokenAddresses() external view returns (address[] memory) { address[] memory _addresses = new address[](underlyingTokenAddresses.length); for (uint256 i = 0; i < underlyingTokenAddresses.length; i++) { _addresses[i] = underlyingTokenAddresses[i]; } return _addresses; } function errorCodeToString(uint256 errorCode) public pure returns (string memory) { if ((errorCode & WOULD_UNBALANCE_GYROSCOPE) != 0) { return "ERR_WOULD_UNBALANCE_GYROSCOPE"; } else if ((errorCode & TOO_MUCH_SLIPPAGE) != 0) { return "ERR_TOO_MUCH_SLIPPAGE"; } else { return "ERR_UNKNOWN"; } } }
//SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./balancer/BPool.sol"; import "./abdk/ABDKMath64x64.sol"; import "./compound/UniswapAnchoredView.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "./ExtendedMath.sol"; interface PriceOracle { function getPrice(string memory tokenSymbol) external view returns (uint256); } interface GyroPriceOracle { function getAmountToMint( uint256 _dollarValueIn, uint256 _inflowHistory, uint256 _nav ) external view returns (uint256); function getAmountToRedeem( uint256 _dollarValueOut, uint256 _outflowHistory, uint256 _nav ) external view returns (uint256 _gyroAmount); function getBPTPrice(address _bPoolAddress, uint256[] memory _underlyingPrices) external view returns (uint256 _bptPrice); } contract GyroPriceOracleV1 is GyroPriceOracle { using ExtendedMath for int128; using ExtendedMath for uint256; using ABDKMath64x64 for uint256; using ABDKMath64x64 for int128; using SafeMath for uint256; uint256 constant bpoolDecimals = 18; function getAmountToMint( uint256 _dollarValueIn, uint256 _inflowHistory, uint256 _nav ) external pure override returns (uint256 _gyroAmount) { uint256 _one = 1e18; if (_nav < _one) { _gyroAmount = _dollarValueIn; } else { // gyroAmount = dollarValueIn * (1 - eps_inflowHistory) or min of 0 uint256 _eps = 1e11; uint256 _scaling = _eps.scaledMul(_inflowHistory); if (_scaling >= _one) { _gyroAmount = 0; } else { _gyroAmount = _dollarValueIn.scaledMul(_one.sub(_scaling)); } } _gyroAmount = _dollarValueIn; return _gyroAmount; } function getAmountToRedeem( uint256 _dollarValueOut, uint256 _outflowHistory, uint256 _nav ) external pure override returns (uint256 _gyroAmount) { if (_nav < 1e18) { // gyroAmount = dollarValueOut * (1 + eps*outflowHistory) uint256 _eps = 1e11; uint256 _scaling = _eps.scaledMul(_outflowHistory).add(1e18); _gyroAmount = _dollarValueOut.scaledMul(_scaling); } else { _gyroAmount = _dollarValueOut; } return _gyroAmount; } function getBPTPrice(address _bPoolAddress, uint256[] memory _underlyingPrices) public view override returns (uint256 _bptPrice) { /* calculations: bptSupply = # of BPT tokens bPoolWeights = array of pool weights (require _underlyingPrices comes in same order) k = constant = product of reserves^weight bptPrice = (k * product of (p_i / w_i)^w_i ) / bptSupply functions from ABDKMath64x64 library -- exp_2 = binary exponent -- log_2 = binary logarithm -- mul = calculate x*y x^y = 2^(y log_2 x) exp_2( mul(y, log_2(x)) ) */ BPool _bPool = BPool(_bPoolAddress); uint256 _bptSupply = _bPool.totalSupply(); address[] memory _tokens = _bPool.getFinalTokens(); uint256 _k = uint256(1e18); // check that these are the right to get value 1 uint256 _weightedProd = uint256(1e18); for (uint256 i = 0; i < _tokens.length; i++) { uint256 _weight = _bPool.getNormalizedWeight(_tokens[i]); uint256 _price = _underlyingPrices[i]; uint256 _tokenBalance = _bPool.getBalance(_tokens[i]); uint256 _decimals = ERC20(_tokens[i]).decimals(); // _k = _k * _tokenBalance ** _weight // console.log("balance", _tokenBalance, "weight", _weight, "decimal", _decimals); if (_decimals < bpoolDecimals) { _tokenBalance = _tokenBalance.mul(10**(bpoolDecimals - _decimals)); _price = _price.mul(10**(bpoolDecimals - _decimals)); } // console.log("balance", _tokenBalance, "weight", _weight); // console.log("decimal", _decimals, "price", _price); _k = _k.mulPow(_tokenBalance, _weight, bpoolDecimals); // _weightedProd = _weightedProd * (_price / _weight) ** _weight; _weightedProd = _weightedProd.mulPow( _price.scaledDiv(_weight, bpoolDecimals), _weight, bpoolDecimals ); // console.log("_k", _k, "_weightedProd", _weightedProd); } uint256 result = _k.scaledMul(_weightedProd).scaledDiv(_bptSupply); // console.log("final _weightedProd", _weightedProd, "supply", _bptSupply); // console.log("final _k", _k, "result", result); return result; } } contract CompoundPriceWrapper is PriceOracle { using SafeMath for uint256; uint256 public constant oraclePriceScale = 1000000; address public compoundOracle; constructor(address _compoundOracle) { compoundOracle = _compoundOracle; } function getPrice(string memory tokenSymbol) public view override returns (uint256) { bytes32 symbolHash = keccak256(bytes(tokenSymbol)); if (symbolHash == keccak256(bytes("WETH"))) { tokenSymbol = "ETH"; } if (symbolHash == keccak256(bytes("sUSD")) || symbolHash == keccak256(bytes("BUSD"))) { tokenSymbol = "DAI"; } UniswapAnchoredView oracle = UniswapAnchoredView(compoundOracle); uint256 unscaledPrice = oracle.price(tokenSymbol); TokenConfig memory tokenConfig = oracle.getTokenConfigBySymbol(tokenSymbol); return unscaledPrice.mul(tokenConfig.baseUnit).div(oraclePriceScale); } } contract DummyPriceWrapper is PriceOracle { function getPrice(string memory tokenSymbol) public pure override returns (uint256) { if (keccak256(bytes(tokenSymbol)) == keccak256(bytes("DAI"))) { return 1e18; } else if (keccak256(bytes(tokenSymbol)) == keccak256(bytes("USDC"))) { return 1e6; } else if (keccak256(bytes(tokenSymbol)) == keccak256(bytes("WETH"))) { return 1350e18; } else { revert("symbol not supported"); } } } // contract MakerPriceWrapper is PriceOracle { // address makerOracle; // constructor(address _makerOracle) { // makerOracle = _makerOracle; // } // // function getPrice(address token, string tokenSymbol) external returns (uint256) { // // return UniswapPriceOracle(makerOracle).getPriceOtherName(token); // // } // }
//SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; import "./GyroFund.sol"; import "./Ownable.sol"; import "./abdk/ABDKMath64x64.sol"; interface GyroRouter { function deposit(address[] memory _tokensIn, uint256[] memory _amountsIn) external returns (address[] memory, uint256[] memory); function withdraw(address[] memory _tokensOut, uint256[] memory _amountsOut) external returns (address[] memory, uint256[] memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } function initializeOwner() external { require(_owner == address(0), "owner already initialized"); _owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == msg.sender, "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
// SPDX-License-Identifier: BSD-4-Clause /* * ABDK Math 64.64 Smart Contract Library. Copyright © 2019 by ABDK Consulting. * Author: Mikhail Vladimirov <[email protected]> */ pragma solidity ^0.7.0; /** * Smart contract library of mathematical functions operating with signed * 64.64-bit fixed point numbers. Signed 64.64-bit fixed point number is * basically a simple fraction whose numerator is signed 128-bit integer and * denominator is 2^64. As long as denominator is always the same, there is no * need to store it, thus in Solidity signed 64.64-bit fixed point numbers are * represented by int128 type holding only the numerator. */ library ABDKMath64x64 { /* * Minimum value signed 64.64-bit fixed point number may have. */ int128 private constant MIN_64x64 = -0x80000000000000000000000000000000; /* * Maximum value signed 64.64-bit fixed point number may have. */ int128 private constant MAX_64x64 = 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; /** * Convert signed 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromInt(int256 x) internal pure returns (int128) { require(x >= -0x8000000000000000 && x <= 0x7FFFFFFFFFFFFFFF); return int128(x << 64); } /** * Convert signed 64.64 fixed point number into signed 64-bit integer number * rounding down. * * @param x signed 64.64-bit fixed point number * @return signed 64-bit integer number */ function toInt(int128 x) internal pure returns (int64) { return int64(x >> 64); } /** * Convert unsigned 256-bit integer number into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function fromUInt(uint256 x) internal pure returns (int128) { require( x <= 0x7FFFFFFFFFFFFFFF, "value is too high to be transformed in a 64.64-bit number" ); return int128(x << 64); } /** * Convert unsigned 256-bit integer number scaled with 10^decimals into signed 64.64-bit fixed point * number. Revert on overflow. * * @param x unsigned 256-bit integer number * @param decimal scale of the number * @return signed 64.64-bit fixed point number */ function fromScaled(uint256 x, uint256 decimal) internal pure returns (int128) { uint256 scale = 10**decimal; int128 wholeNumber = fromUInt(x / scale); int128 decimalNumber = div(fromUInt(x % scale), fromUInt(scale)); return add(wholeNumber, decimalNumber); } /** * Convert signed 64.64 fixed point number into unsigned 64-bit integer * number rounding down. Revert on underflow. * * @param x signed 64.64-bit fixed point number * @return unsigned 64-bit integer number */ function toUInt(int128 x) internal pure returns (uint64) { require(x >= 0); return uint64(x >> 64); } /** * Convert signed 128.128 fixed point number into signed 64.64-bit fixed point * number rounding down. Revert on overflow. * * @param x signed 128.128-bin fixed point number * @return signed 64.64-bit fixed point number */ function from128x128(int256 x) internal pure returns (int128) { int256 result = x >> 64; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Convert signed 64.64 fixed point number into signed 128.128 fixed point * number. * * @param x signed 64.64-bit fixed point number * @return signed 128.128 fixed point number */ function to128x128(int128 x) internal pure returns (int256) { return int256(x) << 64; } /** * Calculate x + y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function add(int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) + y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Calculate x - y. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sub(int128 x, int128 y) internal pure returns (int128) { int256 result = int256(x) - y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Calculate x * y rounding down. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function mul(int128 x, int128 y) internal pure returns (int128) { int256 result = (int256(x) * y) >> 64; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Calculate x * y rounding towards zero, where x is signed 64.64 fixed point * number and y is signed 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y signed 256-bit integer number * @return signed 256-bit integer number */ function muli(int128 x, int256 y) internal pure returns (int256) { if (x == MIN_64x64) { require( y >= -0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF && y <= 0x1000000000000000000000000000000000000000000000000 ); return -y << 63; } else { bool negativeResult = false; if (x < 0) { x = -x; negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint256 absoluteResult = mulu(x, uint256(y)); if (negativeResult) { require( absoluteResult <= 0x8000000000000000000000000000000000000000000000000000000000000000 ); return -int256(absoluteResult); // We rely on overflow behavior here } else { require( absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF ); return int256(absoluteResult); } } } /** * Calculate x * y rounding down, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64 fixed point number * @param y unsigned 256-bit integer number * @return unsigned 256-bit integer number */ function mulu(int128 x, uint256 y) internal pure returns (uint256) { if (y == 0) return 0; require(x >= 0); uint256 lo = (uint256(x) * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) >> 64; uint256 hi = uint256(x) * (y >> 128); require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); hi <<= 64; require(hi <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - lo); return hi + lo; } /** * Calculate x / y rounding towards zero. Revert on overflow or when y is * zero. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function div(int128 x, int128 y) internal pure returns (int128) { require(y != 0); int256 result = (int256(x) << 64) / y; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Calculate x / y rounding towards zero, where x and y are signed 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x signed 256-bit integer number * @param y signed 256-bit integer number * @return signed 64.64-bit fixed point number */ function divi(int256 x, int256 y) internal pure returns (int128) { require(y != 0); bool negativeResult = false; if (x < 0) { x = -x; // We rely on overflow behavior here negativeResult = true; } if (y < 0) { y = -y; // We rely on overflow behavior here negativeResult = !negativeResult; } uint128 absoluteResult = divuu(uint256(x), uint256(y)); if (negativeResult) { require(absoluteResult <= 0x80000000000000000000000000000000); return -int128(absoluteResult); // We rely on overflow behavior here } else { require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(absoluteResult); // We rely on overflow behavior here } } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return signed 64.64-bit fixed point number */ function divu(uint256 x, uint256 y) internal pure returns (int128) { require(y != 0); uint128 result = divuu(x, y); require(result <= uint128(MAX_64x64)); return int128(result); } /** * Calculate -x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function neg(int128 x) internal pure returns (int128) { require(x != MIN_64x64); return -x; } /** * Calculate |x|. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function abs(int128 x) internal pure returns (int128) { require(x != MIN_64x64); return x < 0 ? -x : x; } /** * Calculate 1 / x rounding towards zero. Revert on overflow or when x is * zero. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function inv(int128 x) internal pure returns (int128) { require(x != 0); int256 result = int256(0x100000000000000000000000000000000) / x; require(result >= MIN_64x64 && result <= MAX_64x64); return int128(result); } /** * Calculate arithmetics average of x and y, i.e. (x + y) / 2 rounding down. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function avg(int128 x, int128 y) internal pure returns (int128) { return int128((int256(x) + int256(y)) >> 1); } /** * Calculate geometric average of x and y, i.e. sqrt (x * y) rounding down. * Revert on overflow or in case x * y is negative. * * @param x signed 64.64-bit fixed point number * @param y signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function gavg(int128 x, int128 y) internal pure returns (int128) { int256 m = int256(x) * int256(y); require(m >= 0); require(m < 0x4000000000000000000000000000000000000000000000000000000000000000); return int128(sqrtu(uint256(m))); } /** * Calculate x^y assuming 0^0 is 1, where x is signed 64.64 fixed point number * and y is unsigned 256-bit integer number. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @param y uint256 value * @return signed 64.64-bit fixed point number */ function pow(int128 x, uint256 y) internal pure returns (int128) { uint256 absoluteResult; bool negativeResult = false; if (x >= 0) { absoluteResult = powu(uint256(x) << 63, y); } else { // We rely on overflow behavior here absoluteResult = powu(uint256(uint128(-x)) << 63, y); negativeResult = y & 1 > 0; } absoluteResult >>= 63; if (negativeResult) { require(absoluteResult <= 0x80000000000000000000000000000000); return -int128(absoluteResult); // We rely on overflow behavior here } else { require(absoluteResult <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return int128(absoluteResult); // We rely on overflow behavior here } } /** * Calculate sqrt (x) rounding down. Revert if x < 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function sqrt(int128 x) internal pure returns (int128) { require(x >= 0); return int128(sqrtu(uint256(x) << 64)); } /** * Calculate binary logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function log_2(int128 x) internal pure returns (int128) { require(x > 0); int256 msb = 0; int256 xc = x; if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; } if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore int256 result = (msb - 64) << 64; uint256 ux = uint256(x) << uint256(127 - msb); for (int256 bit = 0x8000000000000000; bit > 0; bit >>= 1) { ux *= ux; uint256 b = ux >> 255; ux >>= 127 + b; result += bit * int256(b); } return int128(result); } /** * Calculate natural logarithm of x. Revert if x <= 0. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function ln(int128 x) internal pure returns (int128) { require(x > 0); return int128((uint256(log_2(x)) * 0xB17217F7D1CF79ABC9E3B39803F2F6AF) >> 128); } /** * Calculate binary exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp_2(int128 x) internal pure returns (int128) { require(x < 0x400000000000000000, "exponent too large"); // Overflow if (x < -0x400000000000000000) return 0; // Underflow uint256 result = 0x80000000000000000000000000000000; if (x & 0x8000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128; if (x & 0x4000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDEC) >> 128; if (x & 0x2000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A791F) >> 128; if (x & 0x1000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98363) >> 128; if (x & 0x800000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FD) >> 128; if (x & 0x400000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE8) >> 128; if (x & 0x200000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA3F) >> 128; if (x & 0x100000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9543) >> 128; if (x & 0x80000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679B) >> 128; if (x & 0x40000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A00F) >> 128; if (x & 0x20000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5DF) >> 128; if (x & 0x10000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939725) >> 128; if (x & 0x8000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3D) >> 128; if (x & 0x4000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B3) >> 128; if (x & 0x2000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292026) >> 128; if (x & 0x1000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FC) >> 128; if (x & 0x800000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAB) >> 128; if (x & 0x400000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7C9) >> 128; if (x & 0x200000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128; if (x & 0x100000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128; if (x & 0x80000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1628) >> 128; if (x & 0x40000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2B) >> 128; if (x & 0x20000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A5) >> 128; if (x & 0x10000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFE) >> 128; if (x & 0x8000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2EF) >> 128; if (x & 0x4000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737A) >> 128; if (x & 0x2000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F06) >> 128; if (x & 0x1000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44F9) >> 128; if (x & 0x800000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC823) >> 128; if (x & 0x400000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE50) >> 128; if (x & 0x200000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFCF) >> 128; if (x & 0x100000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128; if (x & 0x80000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AD) >> 128; if (x & 0x40000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CC) >> 128; if (x & 0x20000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128; if (x & 0x10000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AE) >> 128; if (x & 0x8000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCE) >> 128; if (x & 0x4000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0D) >> 128; if (x & 0x2000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128; if (x & 0x1000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94C) >> 128; if (x & 0x800000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33D) >> 128; if (x & 0x400000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26945) >> 128; if (x & 0x200000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388C) >> 128; if (x & 0x100000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D40) >> 128; if (x & 0x80000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDE) >> 128; if (x & 0x40000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77E) >> 128; if (x & 0x20000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C2) >> 128; if (x & 0x10000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E1) >> 128; if (x & 0x8000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F0) >> 128; if (x & 0x4000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA38) >> 128; if (x & 0x2000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128; if (x & 0x1000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128; if (x & 0x800 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128; if (x & 0x400 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128; if (x & 0x200 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D91) >> 128; if (x & 0x100 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128; if (x & 0x80 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE544) >> 128; if (x & 0x40 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128; if (x & 0x20 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128; if (x & 0x10 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128; if (x & 0x8 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6D) >> 128; if (x & 0x4 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B2) >> 128; if (x & 0x2 > 0) result = (result * 0x1000000000000000162E42FEFA39EF358) >> 128; if (x & 0x1 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AB) >> 128; result >>= uint256(63 - (x >> 64)); require(result <= uint256(MAX_64x64)); return int128(result); } /** * Calculate natural exponent of x. Revert on overflow. * * @param x signed 64.64-bit fixed point number * @return signed 64.64-bit fixed point number */ function exp(int128 x) internal pure returns (int128) { require(x < 0x400000000000000000); // Overflow if (x < -0x400000000000000000) return 0; // Underflow return exp_2(int128((int256(x) * 0x171547652B82FE1777D0FFDA0D23A7D12) >> 128)); } /** * Calculate x / y rounding towards zero, where x and y are unsigned 256-bit * integer numbers. Revert on overflow or when y is zero. * * @param x unsigned 256-bit integer number * @param y unsigned 256-bit integer number * @return unsigned 64.64-bit fixed point number */ function divuu(uint256 x, uint256 y) private pure returns (uint128) { require(y != 0); uint256 result; if (x <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) result = (x << 64) / y; else { uint256 msb = 192; uint256 xc = x >> 192; if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore result = (x << (255 - msb)) / (((y - 1) >> (msb - 191)) + 1); require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 hi = result * (y >> 128); uint256 lo = result * (y & 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); uint256 xh = x >> 192; uint256 xl = x << 64; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here lo = hi << 128; if (xl < lo) xh -= 1; xl -= lo; // We rely on overflow behavior here assert(xh == hi >> 128); result += xl / y; } require(result <= 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF); return uint128(result); } /** * Calculate x^y assuming 0^0 is 1, where x is unsigned 129.127 fixed point * number and y is unsigned 256-bit integer number. Revert on overflow. * * @param x unsigned 129.127-bit fixed point number * @param y uint256 value * @return unsigned 129.127-bit fixed point number */ function powu(uint256 x, uint256 y) private pure returns (uint256) { if (y == 0) return 0x80000000000000000000000000000000; else if (x == 0) return 0; else { int256 msb = 0; uint256 xc = x; if (xc >= 0x100000000000000000000000000000000) { xc >>= 128; msb += 128; } if (xc >= 0x10000000000000000) { xc >>= 64; msb += 64; } if (xc >= 0x100000000) { xc >>= 32; msb += 32; } if (xc >= 0x10000) { xc >>= 16; msb += 16; } if (xc >= 0x100) { xc >>= 8; msb += 8; } if (xc >= 0x10) { xc >>= 4; msb += 4; } if (xc >= 0x4) { xc >>= 2; msb += 2; } if (xc >= 0x2) msb += 1; // No need to shift xc anymore int256 xe = msb - 127; if (xe > 0) x >>= uint256(xe); else x <<= uint256(-xe); uint256 result = 0x80000000000000000000000000000000; int256 re = 0; while (y > 0) { if (y & 1 > 0) { result = result * x; y -= 1; re += xe; if ( result >= 0x8000000000000000000000000000000000000000000000000000000000000000 ) { result >>= 128; re += 1; } else result >>= 127; if (re < -127) return 0; // Underflow require(re < 128); // Overflow } else { x = x * x; y >>= 1; xe <<= 1; if (x >= 0x8000000000000000000000000000000000000000000000000000000000000000) { x >>= 128; xe += 1; } else x >>= 127; if (xe < -127) return 0; // Underflow require(xe < 128); // Overflow } } if (re > 0) result <<= uint256(re); else if (re < 0) result >>= uint256(-re); return result; } } /** * Calculate sqrt (x) rounding down, where x is unsigned 256-bit integer * number. * * @param x unsigned 256-bit integer number * @return unsigned 128-bit integer number */ function sqrtu(uint256 x) private pure returns (uint128) { if (x == 0) return 0; else { uint256 xx = x; uint256 r = 1; if (xx >= 0x100000000000000000000000000000000) { xx >>= 128; r <<= 64; } if (xx >= 0x10000000000000000) { xx >>= 64; r <<= 32; } if (xx >= 0x100000000) { xx >>= 32; r <<= 16; } if (xx >= 0x10000) { xx >>= 16; r <<= 8; } if (xx >= 0x100) { xx >>= 8; r <<= 4; } if (xx >= 0x10) { xx >>= 4; r <<= 2; } if (xx >= 0x8) { r <<= 1; } r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; r = (r + x / r) >> 1; // Seven iterations should be enough uint256 r1 = x / r; return uint128(r < r1 ? r : r1); } } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; abstract contract BColor { function getColor() external view virtual returns (bytes32); } contract BBronze is BColor { function getColor() external pure override returns (bytes32) { return bytes32("BRONZE"); } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BColor.sol"; contract BConst is BBronze { uint256 public constant BONE = 10**18; uint256 public constant MIN_BOUND_TOKENS = 2; uint256 public constant MAX_BOUND_TOKENS = 8; uint256 public constant MIN_FEE = BONE / 10**6; uint256 public constant MAX_FEE = BONE / 10; uint256 public constant EXIT_FEE = 0; uint256 public constant MIN_WEIGHT = BONE; uint256 public constant MAX_WEIGHT = BONE * 50; uint256 public constant MAX_TOTAL_WEIGHT = BONE * 50; uint256 public constant MIN_BALANCE = BONE / 10**12; uint256 public constant INIT_POOL_SUPPLY = BONE * 100; uint256 public constant MIN_BPOW_BASE = 1 wei; uint256 public constant MAX_BPOW_BASE = (2 * BONE) - 1 wei; uint256 public constant BPOW_PRECISION = BONE / 10**10; uint256 public constant MAX_IN_RATIO = BONE / 2; uint256 public constant MAX_OUT_RATIO = (BONE / 3) + 1 wei; }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BNum.sol"; contract BMath is BBronze, BConst, BNum { /********************************************************************************************** // calcSpotPrice // // sP = spotPrice // // bI = tokenBalanceIn ( bI / wI ) 1 // // bO = tokenBalanceOut sP = ----------- * ---------- // // wI = tokenWeightIn ( bO / wO ) ( 1 - sF ) // // wO = tokenWeightOut // // sF = swapFee // **********************************************************************************************/ function calcSpotPrice( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 swapFee ) public pure returns (uint256 spotPrice) { uint256 numer = bdiv(tokenBalanceIn, tokenWeightIn); uint256 denom = bdiv(tokenBalanceOut, tokenWeightOut); uint256 ratio = bdiv(numer, denom); uint256 scale = bdiv(BONE, bsub(BONE, swapFee)); return (spotPrice = bmul(ratio, scale)); } /********************************************************************************************** // calcOutGivenIn // // aO = tokenAmountOut // // bO = tokenBalanceOut // // bI = tokenBalanceIn / / bI \ (wI / wO) \ // // aI = tokenAmountIn aO = bO * | 1 - | -------------------------- | ^ | // // wI = tokenWeightIn \ \ ( bI + ( aI * ( 1 - sF )) / / // // wO = tokenWeightOut // // sF = swapFee // **********************************************************************************************/ function calcOutGivenIn( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 tokenAmountIn, uint256 swapFee ) public pure returns (uint256 tokenAmountOut) { uint256 weightRatio = bdiv(tokenWeightIn, tokenWeightOut); uint256 adjustedIn = bsub(BONE, swapFee); adjustedIn = bmul(tokenAmountIn, adjustedIn); uint256 y = bdiv(tokenBalanceIn, badd(tokenBalanceIn, adjustedIn)); uint256 foo = bpow(y, weightRatio); uint256 bar = bsub(BONE, foo); tokenAmountOut = bmul(tokenBalanceOut, bar); return tokenAmountOut; } /********************************************************************************************** // calcInGivenOut // // aI = tokenAmountIn // // bO = tokenBalanceOut / / bO \ (wO / wI) \ // // bI = tokenBalanceIn bI * | | ------------ | ^ - 1 | // // aO = tokenAmountOut aI = \ \ ( bO - aO ) / / // // wI = tokenWeightIn -------------------------------------------- // // wO = tokenWeightOut ( 1 - sF ) // // sF = swapFee // **********************************************************************************************/ function calcInGivenOut( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 tokenAmountOut, uint256 swapFee ) public pure returns (uint256 tokenAmountIn) { uint256 weightRatio = bdiv(tokenWeightOut, tokenWeightIn); uint256 diff = bsub(tokenBalanceOut, tokenAmountOut); uint256 y = bdiv(tokenBalanceOut, diff); uint256 foo = bpow(y, weightRatio); foo = bsub(foo, BONE); tokenAmountIn = bsub(BONE, swapFee); tokenAmountIn = bdiv(bmul(tokenBalanceIn, foo), tokenAmountIn); return tokenAmountIn; } /********************************************************************************************** // calcPoolOutGivenSingleIn // // pAo = poolAmountOut / \ // // tAi = tokenAmountIn /// / // wI \ \\ \ wI \ // // wI = tokenWeightIn //| tAi *| 1 - || 1 - -- | * sF || + tBi \ -- \ // // tW = totalWeight pAo=|| \ \ \\ tW / // | ^ tW | * pS - pS // // tBi = tokenBalanceIn \\ ------------------------------------- / / // // pS = poolSupply \\ tBi / / // // sF = swapFee \ / // **********************************************************************************************/ function calcPoolOutGivenSingleIn( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 poolSupply, uint256 totalWeight, uint256 tokenAmountIn, uint256 swapFee ) public pure returns (uint256 poolAmountOut) { // Charge the trading fee for the proportion of tokenAi // which is implicitly traded to the other pool tokens. // That proportion is (1- weightTokenIn) // tokenAiAfterFee = tAi * (1 - (1-weightTi) * poolFee); uint256 normalizedWeight = bdiv(tokenWeightIn, totalWeight); uint256 zaz = bmul(bsub(BONE, normalizedWeight), swapFee); uint256 tokenAmountInAfterFee = bmul(tokenAmountIn, bsub(BONE, zaz)); uint256 newTokenBalanceIn = badd(tokenBalanceIn, tokenAmountInAfterFee); uint256 tokenInRatio = bdiv(newTokenBalanceIn, tokenBalanceIn); // uint newPoolSupply = (ratioTi ^ weightTi) * poolSupply; uint256 poolRatio = bpow(tokenInRatio, normalizedWeight); uint256 newPoolSupply = bmul(poolRatio, poolSupply); poolAmountOut = bsub(newPoolSupply, poolSupply); return poolAmountOut; } /********************************************************************************************** // calcSingleInGivenPoolOut // // tAi = tokenAmountIn //(pS + pAo)\ / 1 \\ // // pS = poolSupply || --------- | ^ | --------- || * bI - bI // // pAo = poolAmountOut \\ pS / \(wI / tW)// // // bI = balanceIn tAi = -------------------------------------------- // // wI = weightIn / wI \ // // tW = totalWeight | 1 - ---- | * sF // // sF = swapFee \ tW / // **********************************************************************************************/ function calcSingleInGivenPoolOut( uint256 tokenBalanceIn, uint256 tokenWeightIn, uint256 poolSupply, uint256 totalWeight, uint256 poolAmountOut, uint256 swapFee ) public pure returns (uint256 tokenAmountIn) { uint256 normalizedWeight = bdiv(tokenWeightIn, totalWeight); uint256 newPoolSupply = badd(poolSupply, poolAmountOut); uint256 poolRatio = bdiv(newPoolSupply, poolSupply); //uint newBalTi = poolRatio^(1/weightTi) * balTi; uint256 boo = bdiv(BONE, normalizedWeight); uint256 tokenInRatio = bpow(poolRatio, boo); uint256 newTokenBalanceIn = bmul(tokenInRatio, tokenBalanceIn); uint256 tokenAmountInAfterFee = bsub(newTokenBalanceIn, tokenBalanceIn); // Do reverse order of fees charged in joinswap_ExternAmountIn, this way // ``` pAo == joinswap_ExternAmountIn(Ti, joinswap_PoolAmountOut(pAo, Ti)) ``` //uint tAi = tAiAfterFee / (1 - (1-weightTi) * swapFee) ; uint256 zar = bmul(bsub(BONE, normalizedWeight), swapFee); tokenAmountIn = bdiv(tokenAmountInAfterFee, bsub(BONE, zar)); return tokenAmountIn; } /********************************************************************************************** // calcSingleOutGivenPoolIn // // tAo = tokenAmountOut / / \\ // // bO = tokenBalanceOut / // pS - (pAi * (1 - eF)) \ / 1 \ \\ // // pAi = poolAmountIn | bO - || ----------------------- | ^ | --------- | * b0 || // // ps = poolSupply \ \\ pS / \(wO / tW)/ // // // wI = tokenWeightIn tAo = \ \ // // // tW = totalWeight / / wO \ \ // // sF = swapFee * | 1 - | 1 - ---- | * sF | // // eF = exitFee \ \ tW / / // **********************************************************************************************/ function calcSingleOutGivenPoolIn( uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 poolSupply, uint256 totalWeight, uint256 poolAmountIn, uint256 swapFee ) public pure returns (uint256 tokenAmountOut) { uint256 normalizedWeight = bdiv(tokenWeightOut, totalWeight); // charge exit fee on the pool token side // pAiAfterExitFee = pAi*(1-exitFee) uint256 poolAmountInAfterExitFee = bmul(poolAmountIn, bsub(BONE, EXIT_FEE)); uint256 newPoolSupply = bsub(poolSupply, poolAmountInAfterExitFee); uint256 poolRatio = bdiv(newPoolSupply, poolSupply); // newBalTo = poolRatio^(1/weightTo) * balTo; uint256 tokenOutRatio = bpow(poolRatio, bdiv(BONE, normalizedWeight)); uint256 newTokenBalanceOut = bmul(tokenOutRatio, tokenBalanceOut); uint256 tokenAmountOutBeforeSwapFee = bsub(tokenBalanceOut, newTokenBalanceOut); // charge swap fee on the output token side //uint tAo = tAoBeforeSwapFee * (1 - (1-weightTo) * swapFee) uint256 zaz = bmul(bsub(BONE, normalizedWeight), swapFee); tokenAmountOut = bmul(tokenAmountOutBeforeSwapFee, bsub(BONE, zaz)); return tokenAmountOut; } /********************************************************************************************** // calcPoolInGivenSingleOut // // pAi = poolAmountIn // / tAo \\ / wO \ \ // // bO = tokenBalanceOut // | bO - -------------------------- |\ | ---- | \ // // tAo = tokenAmountOut pS - || \ 1 - ((1 - (tO / tW)) * sF)/ | ^ \ tW / * pS | // // ps = poolSupply \\ -----------------------------------/ / // // wO = tokenWeightOut pAi = \\ bO / / // // tW = totalWeight ------------------------------------------------------------- // // sF = swapFee ( 1 - eF ) // // eF = exitFee // **********************************************************************************************/ function calcPoolInGivenSingleOut( uint256 tokenBalanceOut, uint256 tokenWeightOut, uint256 poolSupply, uint256 totalWeight, uint256 tokenAmountOut, uint256 swapFee ) public pure returns (uint256 poolAmountIn) { // charge swap fee on the output token side uint256 normalizedWeight = bdiv(tokenWeightOut, totalWeight); //uint tAoBeforeSwapFee = tAo / (1 - (1-weightTo) * swapFee) ; uint256 zoo = bsub(BONE, normalizedWeight); uint256 zar = bmul(zoo, swapFee); uint256 tokenAmountOutBeforeSwapFee = bdiv(tokenAmountOut, bsub(BONE, zar)); uint256 newTokenBalanceOut = bsub(tokenBalanceOut, tokenAmountOutBeforeSwapFee); uint256 tokenOutRatio = bdiv(newTokenBalanceOut, tokenBalanceOut); //uint newPoolSupply = (ratioTo ^ weightTo) * poolSupply; uint256 poolRatio = bpow(tokenOutRatio, normalizedWeight); uint256 newPoolSupply = bmul(poolRatio, poolSupply); uint256 poolAmountInAfterExitFee = bsub(poolSupply, newPoolSupply); // charge exit fee on the pool token side // pAi = pAiAfterExitFee/(1-exitFee) poolAmountIn = bdiv(poolAmountInAfterExitFee, bsub(BONE, EXIT_FEE)); return poolAmountIn; } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BConst.sol"; contract BNum is BConst { function btoi(uint256 a) internal pure returns (uint256) { return a / BONE; } function bfloor(uint256 a) internal pure returns (uint256) { return btoi(a) * BONE; } function badd(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "ERR_ADD_OVERFLOW"); return c; } function bsub(uint256 a, uint256 b) internal pure returns (uint256) { (uint256 c, bool flag) = bsubSign(a, b); require(!flag, "ERR_SUB_UNDERFLOW"); return c; } function bsubSign(uint256 a, uint256 b) internal pure returns (uint256, bool) { if (a >= b) { return (a - b, false); } else { return (b - a, true); } } function bmul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c0 = a * b; require(a == 0 || c0 / a == b, "ERR_MUL_OVERFLOW"); uint256 c1 = c0 + (BONE / 2); require(c1 >= c0, "ERR_MUL_OVERFLOW"); uint256 c2 = c1 / BONE; return c2; } function bdiv(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, "ERR_DIV_ZERO"); uint256 c0 = a * BONE; require(a == 0 || c0 / a == BONE, "ERR_DIV_INTERNAL"); // bmul overflow uint256 c1 = c0 + (b / 2); require(c1 >= c0, "ERR_DIV_INTERNAL"); // badd require uint256 c2 = c1 / b; return c2; } // DSMath.wpow function bpowi(uint256 a, uint256 n) internal pure returns (uint256) { uint256 z = n % 2 != 0 ? a : BONE; for (n /= 2; n != 0; n /= 2) { a = bmul(a, a); if (n % 2 != 0) { z = bmul(z, a); } } return z; } // Compute b^(e.w) by splitting it into (b^e)*(b^0.w). // Use `bpowi` for `b^e` and `bpowK` for k iterations // of approximation of b^0.w function bpow(uint256 base, uint256 exp) internal pure returns (uint256) { require(base >= MIN_BPOW_BASE, "ERR_BPOW_BASE_TOO_LOW"); require(base <= MAX_BPOW_BASE, "ERR_BPOW_BASE_TOO_HIGH"); uint256 whole = bfloor(exp); uint256 remain = bsub(exp, whole); uint256 wholePow = bpowi(base, btoi(whole)); if (remain == 0) { return wholePow; } uint256 partialResult = bpowApprox(base, remain, BPOW_PRECISION); return bmul(wholePow, partialResult); } function bpowApprox( uint256 base, uint256 exp, uint256 precision ) internal pure returns (uint256) { // term 0: uint256 a = exp; (uint256 x, bool xneg) = bsubSign(base, BONE); uint256 term = BONE; uint256 sum = term; bool negative = false; // term(k) = numer / denom // = (product(a - i - 1, i=1-->k) * x^k) / (k!) // each iteration, multiply previous term by (a-(k-1)) * x / k // continue until term is less than precision for (uint256 i = 1; term >= precision; i++) { uint256 bigK = i * BONE; (uint256 c, bool cneg) = bsubSign(a, bsub(bigK, BONE)); term = bmul(term, bmul(c, x)); term = bdiv(term, bigK); if (term == 0) break; if (xneg) negative = !negative; if (cneg) negative = !negative; if (negative) { sum = bsub(sum, term); } else { sum = badd(sum, term); } } return sum; } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BToken.sol"; import "./BMath.sol"; contract BPool is BBronze, BToken, BMath { struct Record { bool bound; // is token bound to pool uint256 index; // private uint256 denorm; // denormalized weight uint256 balance; } event LOG_SWAP( address indexed caller, address indexed tokenIn, address indexed tokenOut, uint256 tokenAmountIn, uint256 tokenAmountOut ); event LOG_JOIN( address indexed caller, address indexed tokenIn, uint256 tokenAmountIn ); event LOG_EXIT( address indexed caller, address indexed tokenOut, uint256 tokenAmountOut ); event LOG_CALL( bytes4 indexed sig, address indexed caller, bytes data ) anonymous; modifier _logs_() { emit LOG_CALL(msg.sig, msg.sender, msg.data); _; } modifier _lock_() { require(!_mutex, "ERR_REENTRY"); _mutex = true; _; _mutex = false; } modifier _viewlock_() { require(!_mutex, "ERR_REENTRY"); _; } bool private _mutex; address private _factory; // BFactory address to push token exitFee to address private _controller; // has CONTROL role bool private _publicSwap; // true if PUBLIC can call SWAP functions // `setSwapFee` and `finalize` require CONTROL // `finalize` sets `PUBLIC can SWAP`, `PUBLIC can JOIN` uint256 private _swapFee; bool private _finalized; address[] private _tokens; mapping(address => Record) private _records; uint256 private _totalWeight; constructor() { _controller = msg.sender; _factory = msg.sender; _swapFee = MIN_FEE; _publicSwap = false; _finalized = false; } function isPublicSwap() external view returns (bool) { return _publicSwap; } function isFinalized() external view returns (bool) { return _finalized; } function isBound(address t) external view returns (bool) { return _records[t].bound; } function getNumTokens() external view returns (uint256) { return _tokens.length; } function getCurrentTokens() external view _viewlock_ returns (address[] memory tokens) { return _tokens; } function getFinalTokens() external view _viewlock_ returns (address[] memory tokens) { require(_finalized, "ERR_NOT_FINALIZED"); return _tokens; } function getDenormalizedWeight(address token) external view _viewlock_ returns (uint256) { require(_records[token].bound, "ERR_NOT_BOUND"); return _records[token].denorm; } function getTotalDenormalizedWeight() external view _viewlock_ returns (uint256) { return _totalWeight; } function getNormalizedWeight(address token) external view _viewlock_ returns (uint256) { require(_records[token].bound, "ERR_NOT_BOUND"); uint256 denorm = _records[token].denorm; return bdiv(denorm, _totalWeight); } function getBalance(address token) external view _viewlock_ returns (uint256) { require(_records[token].bound, "ERR_NOT_BOUND"); return _records[token].balance; } function getSwapFee() external view _viewlock_ returns (uint256) { return _swapFee; } function getController() external view _viewlock_ returns (address) { return _controller; } function setSwapFee(uint256 swapFee) external _logs_ _lock_ { require(!_finalized, "ERR_IS_FINALIZED"); require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); require(swapFee >= MIN_FEE, "ERR_MIN_FEE"); require(swapFee <= MAX_FEE, "ERR_MAX_FEE"); _swapFee = swapFee; } function setController(address manager) external _logs_ _lock_ { require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); _controller = manager; } function setPublicSwap(bool public_) external _logs_ _lock_ { require(!_finalized, "ERR_IS_FINALIZED"); require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); _publicSwap = public_; } function finalize() external _logs_ _lock_ { require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); require(!_finalized, "ERR_IS_FINALIZED"); require(_tokens.length >= MIN_BOUND_TOKENS, "ERR_MIN_TOKENS"); _finalized = true; _publicSwap = true; _mintPoolShare(INIT_POOL_SUPPLY); _pushPoolShare(msg.sender, INIT_POOL_SUPPLY); } function bind( address token, uint256 balance, uint256 denorm ) external _logs_ // _lock_ Bind does not lock because it jumps to `rebind`, which does { require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); require(!_records[token].bound, "ERR_IS_BOUND"); require(!_finalized, "ERR_IS_FINALIZED"); require(_tokens.length < MAX_BOUND_TOKENS, "ERR_MAX_TOKENS"); _records[token] = Record({ bound: true, index: _tokens.length, denorm: 0, // balance and denorm will be validated balance: 0 // and set by `rebind` }); _tokens.push(token); rebind(token, balance, denorm); } function rebind( address token, uint256 balance, uint256 denorm ) public _logs_ _lock_ { require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); require(_records[token].bound, "ERR_NOT_BOUND"); require(!_finalized, "ERR_IS_FINALIZED"); require(denorm >= MIN_WEIGHT, "ERR_MIN_WEIGHT"); require(denorm <= MAX_WEIGHT, "ERR_MAX_WEIGHT"); require(balance >= MIN_BALANCE, "ERR_MIN_BALANCE"); // Adjust the denorm and totalWeight uint256 oldWeight = _records[token].denorm; if (denorm > oldWeight) { _totalWeight = badd(_totalWeight, bsub(denorm, oldWeight)); require(_totalWeight <= MAX_TOTAL_WEIGHT, "ERR_MAX_TOTAL_WEIGHT"); } else if (denorm < oldWeight) { _totalWeight = bsub(_totalWeight, bsub(oldWeight, denorm)); } _records[token].denorm = denorm; // Adjust the balance record and actual token balance uint256 oldBalance = _records[token].balance; _records[token].balance = balance; if (balance > oldBalance) { _pullUnderlying(token, msg.sender, bsub(balance, oldBalance)); } else if (balance < oldBalance) { // In this case liquidity is being withdrawn, so charge EXIT_FEE uint256 tokenBalanceWithdrawn = bsub(oldBalance, balance); uint256 tokenExitFee = bmul(tokenBalanceWithdrawn, EXIT_FEE); _pushUnderlying( token, msg.sender, bsub(tokenBalanceWithdrawn, tokenExitFee) ); _pushUnderlying(token, _factory, tokenExitFee); } } function unbind(address token) external _logs_ _lock_ { require(msg.sender == _controller, "ERR_NOT_CONTROLLER"); require(_records[token].bound, "ERR_NOT_BOUND"); require(!_finalized, "ERR_IS_FINALIZED"); uint256 tokenBalance = _records[token].balance; uint256 tokenExitFee = bmul(tokenBalance, EXIT_FEE); _totalWeight = bsub(_totalWeight, _records[token].denorm); // Swap the token-to-unbind with the last token, // then delete the last token uint256 index = _records[token].index; uint256 last = _tokens.length - 1; _tokens[index] = _tokens[last]; _records[_tokens[index]].index = index; _tokens.pop(); _records[token] = Record({ bound: false, index: 0, denorm: 0, balance: 0 }); _pushUnderlying(token, msg.sender, bsub(tokenBalance, tokenExitFee)); _pushUnderlying(token, _factory, tokenExitFee); } // Absorb any tokens that have been sent to this contract into the pool function gulp(address token) external _logs_ _lock_ { require(_records[token].bound, "ERR_NOT_BOUND"); _records[token].balance = BIERC20(token).balanceOf(address(this)); } function getSpotPrice(address tokenIn, address tokenOut) external view _viewlock_ returns (uint256 spotPrice) { require(_records[tokenIn].bound, "ERR_NOT_BOUND"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); Record storage inRecord = _records[tokenIn]; Record storage outRecord = _records[tokenOut]; return calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, _swapFee ); } function getSpotPriceSansFee(address tokenIn, address tokenOut) external view _viewlock_ returns (uint256 spotPrice) { require(_records[tokenIn].bound, "ERR_NOT_BOUND"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); Record storage inRecord = _records[tokenIn]; Record storage outRecord = _records[tokenOut]; return calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, 0 ); } function joinPool(uint256 poolAmountOut, uint256[] calldata maxAmountsIn) external _logs_ _lock_ { require(_finalized, "ERR_NOT_FINALIZED"); uint256 poolTotal = totalSupply(); uint256 ratio = bdiv(poolAmountOut, poolTotal); require(ratio != 0, "ERR_MATH_APPROX"); for (uint256 i = 0; i < _tokens.length; i++) { address t = _tokens[i]; uint256 bal = _records[t].balance; uint256 tokenAmountIn = bmul(ratio, bal); require(tokenAmountIn != 0, "ERR_MATH_APPROX"); require(tokenAmountIn <= maxAmountsIn[i], "ERR_LIMIT_IN"); _records[t].balance = badd(_records[t].balance, tokenAmountIn); emit LOG_JOIN(msg.sender, t, tokenAmountIn); _pullUnderlying(t, msg.sender, tokenAmountIn); } _mintPoolShare(poolAmountOut); _pushPoolShare(msg.sender, poolAmountOut); } function exitPool(uint256 poolAmountIn, uint256[] calldata minAmountsOut) external _logs_ _lock_ { require(_finalized, "ERR_NOT_FINALIZED"); uint256 poolTotal = totalSupply(); uint256 exitFee = bmul(poolAmountIn, EXIT_FEE); uint256 pAiAfterExitFee = bsub(poolAmountIn, exitFee); uint256 ratio = bdiv(pAiAfterExitFee, poolTotal); require(ratio != 0, "ERR_MATH_APPROX"); _pullPoolShare(msg.sender, poolAmountIn); _pushPoolShare(_factory, exitFee); _burnPoolShare(pAiAfterExitFee); for (uint256 i = 0; i < _tokens.length; i++) { address t = _tokens[i]; uint256 bal = _records[t].balance; uint256 tokenAmountOut = bmul(ratio, bal); require(tokenAmountOut != 0, "ERR_MATH_APPROX"); require(tokenAmountOut >= minAmountsOut[i], "ERR_LIMIT_OUT"); _records[t].balance = bsub(_records[t].balance, tokenAmountOut); emit LOG_EXIT(msg.sender, t, tokenAmountOut); _pushUnderlying(t, msg.sender, tokenAmountOut); } } function swapExactAmountIn( address tokenIn, uint256 tokenAmountIn, address tokenOut, uint256 minAmountOut, uint256 maxPrice ) external _logs_ _lock_ returns (uint256 tokenAmountOut, uint256 spotPriceAfter) { require(_records[tokenIn].bound, "ERR_NOT_BOUND"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); require(_publicSwap, "ERR_SWAP_NOT_PUBLIC"); Record storage inRecord = _records[address(tokenIn)]; Record storage outRecord = _records[address(tokenOut)]; require( tokenAmountIn <= bmul(inRecord.balance, MAX_IN_RATIO), "ERR_MAX_IN_RATIO" ); uint256 spotPriceBefore = calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, _swapFee ); require(spotPriceBefore <= maxPrice, "ERR_BAD_LIMIT_PRICE"); tokenAmountOut = calcOutGivenIn( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, tokenAmountIn, _swapFee ); require(tokenAmountOut >= minAmountOut, "ERR_LIMIT_OUT"); inRecord.balance = badd(inRecord.balance, tokenAmountIn); outRecord.balance = bsub(outRecord.balance, tokenAmountOut); spotPriceAfter = calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, _swapFee ); require(spotPriceAfter >= spotPriceBefore, "ERR_MATH_APPROX"); require(spotPriceAfter <= maxPrice, "ERR_LIMIT_PRICE"); require( spotPriceBefore <= bdiv(tokenAmountIn, tokenAmountOut), "ERR_MATH_APPROX" ); emit LOG_SWAP( msg.sender, tokenIn, tokenOut, tokenAmountIn, tokenAmountOut ); _pullUnderlying(tokenIn, msg.sender, tokenAmountIn); _pushUnderlying(tokenOut, msg.sender, tokenAmountOut); return (tokenAmountOut, spotPriceAfter); } function swapExactAmountOut( address tokenIn, uint256 maxAmountIn, address tokenOut, uint256 tokenAmountOut, uint256 maxPrice ) external _logs_ _lock_ returns (uint256 tokenAmountIn, uint256 spotPriceAfter) { require(_records[tokenIn].bound, "ERR_NOT_BOUND"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); require(_publicSwap, "ERR_SWAP_NOT_PUBLIC"); Record storage inRecord = _records[address(tokenIn)]; Record storage outRecord = _records[address(tokenOut)]; require( tokenAmountOut <= bmul(outRecord.balance, MAX_OUT_RATIO), "ERR_MAX_OUT_RATIO" ); uint256 spotPriceBefore = calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, _swapFee ); require(spotPriceBefore <= maxPrice, "ERR_BAD_LIMIT_PRICE"); tokenAmountIn = calcInGivenOut( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, tokenAmountOut, _swapFee ); require(tokenAmountIn <= maxAmountIn, "ERR_LIMIT_IN"); inRecord.balance = badd(inRecord.balance, tokenAmountIn); outRecord.balance = bsub(outRecord.balance, tokenAmountOut); spotPriceAfter = calcSpotPrice( inRecord.balance, inRecord.denorm, outRecord.balance, outRecord.denorm, _swapFee ); require(spotPriceAfter >= spotPriceBefore, "ERR_MATH_APPROX"); require(spotPriceAfter <= maxPrice, "ERR_LIMIT_PRICE"); require( spotPriceBefore <= bdiv(tokenAmountIn, tokenAmountOut), "ERR_MATH_APPROX" ); emit LOG_SWAP( msg.sender, tokenIn, tokenOut, tokenAmountIn, tokenAmountOut ); _pullUnderlying(tokenIn, msg.sender, tokenAmountIn); _pushUnderlying(tokenOut, msg.sender, tokenAmountOut); return (tokenAmountIn, spotPriceAfter); } function joinswapExternAmountIn( address tokenIn, uint256 tokenAmountIn, uint256 minPoolAmountOut ) external _logs_ _lock_ returns (uint256 poolAmountOut) { require(_finalized, "ERR_NOT_FINALIZED"); require(_records[tokenIn].bound, "ERR_NOT_BOUND"); require( tokenAmountIn <= bmul(_records[tokenIn].balance, MAX_IN_RATIO), "ERR_MAX_IN_RATIO" ); Record storage inRecord = _records[tokenIn]; poolAmountOut = calcPoolOutGivenSingleIn( inRecord.balance, inRecord.denorm, _totalSupply, _totalWeight, tokenAmountIn, _swapFee ); require(poolAmountOut >= minPoolAmountOut, "ERR_LIMIT_OUT"); inRecord.balance = badd(inRecord.balance, tokenAmountIn); emit LOG_JOIN(msg.sender, tokenIn, tokenAmountIn); _mintPoolShare(poolAmountOut); _pushPoolShare(msg.sender, poolAmountOut); _pullUnderlying(tokenIn, msg.sender, tokenAmountIn); return poolAmountOut; } function joinswapPoolAmountOut( address tokenIn, uint256 poolAmountOut, uint256 maxAmountIn ) external _logs_ _lock_ returns (uint256 tokenAmountIn) { require(_finalized, "ERR_NOT_FINALIZED"); require(_records[tokenIn].bound, "ERR_NOT_BOUND"); Record storage inRecord = _records[tokenIn]; tokenAmountIn = calcSingleInGivenPoolOut( inRecord.balance, inRecord.denorm, _totalSupply, _totalWeight, poolAmountOut, _swapFee ); require(tokenAmountIn != 0, "ERR_MATH_APPROX"); require(tokenAmountIn <= maxAmountIn, "ERR_LIMIT_IN"); require( tokenAmountIn <= bmul(_records[tokenIn].balance, MAX_IN_RATIO), "ERR_MAX_IN_RATIO" ); inRecord.balance = badd(inRecord.balance, tokenAmountIn); emit LOG_JOIN(msg.sender, tokenIn, tokenAmountIn); _mintPoolShare(poolAmountOut); _pushPoolShare(msg.sender, poolAmountOut); _pullUnderlying(tokenIn, msg.sender, tokenAmountIn); return tokenAmountIn; } function exitswapPoolAmountIn( address tokenOut, uint256 poolAmountIn, uint256 minAmountOut ) external _logs_ _lock_ returns (uint256 tokenAmountOut) { require(_finalized, "ERR_NOT_FINALIZED"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); Record storage outRecord = _records[tokenOut]; tokenAmountOut = calcSingleOutGivenPoolIn( outRecord.balance, outRecord.denorm, _totalSupply, _totalWeight, poolAmountIn, _swapFee ); require(tokenAmountOut >= minAmountOut, "ERR_LIMIT_OUT"); require( tokenAmountOut <= bmul(_records[tokenOut].balance, MAX_OUT_RATIO), "ERR_MAX_OUT_RATIO" ); outRecord.balance = bsub(outRecord.balance, tokenAmountOut); uint256 exitFee = bmul(poolAmountIn, EXIT_FEE); emit LOG_EXIT(msg.sender, tokenOut, tokenAmountOut); _pullPoolShare(msg.sender, poolAmountIn); _burnPoolShare(bsub(poolAmountIn, exitFee)); _pushPoolShare(_factory, exitFee); _pushUnderlying(tokenOut, msg.sender, tokenAmountOut); return tokenAmountOut; } function exitswapExternAmountOut( address tokenOut, uint256 tokenAmountOut, uint256 maxPoolAmountIn ) external _logs_ _lock_ returns (uint256 poolAmountIn) { require(_finalized, "ERR_NOT_FINALIZED"); require(_records[tokenOut].bound, "ERR_NOT_BOUND"); require( tokenAmountOut <= bmul(_records[tokenOut].balance, MAX_OUT_RATIO), "ERR_MAX_OUT_RATIO" ); Record storage outRecord = _records[tokenOut]; poolAmountIn = calcPoolInGivenSingleOut( outRecord.balance, outRecord.denorm, _totalSupply, _totalWeight, tokenAmountOut, _swapFee ); require(poolAmountIn != 0, "ERR_MATH_APPROX"); require(poolAmountIn <= maxPoolAmountIn, "ERR_LIMIT_IN"); outRecord.balance = bsub(outRecord.balance, tokenAmountOut); uint256 exitFee = bmul(poolAmountIn, EXIT_FEE); emit LOG_EXIT(msg.sender, tokenOut, tokenAmountOut); _pullPoolShare(msg.sender, poolAmountIn); _burnPoolShare(bsub(poolAmountIn, exitFee)); _pushPoolShare(_factory, exitFee); _pushUnderlying(tokenOut, msg.sender, tokenAmountOut); return poolAmountIn; } // == // 'Underlying' token-manipulation functions make external calls but are NOT locked // You must `_lock_` or otherwise ensure reentry-safety function _pullUnderlying( address erc20, address from, uint256 amount ) internal { bool xfer = BIERC20(erc20).transferFrom(from, address(this), amount); require(xfer, "ERR_ERC20_FALSE"); } function _pushUnderlying( address erc20, address to, uint256 amount ) internal { bool xfer = BIERC20(erc20).transfer(to, amount); require(xfer, "ERR_ERC20_FALSE"); } function _pullPoolShare(address from, uint256 amount) internal { _pull(from, amount); } function _pushPoolShare(address to, uint256 amount) internal { _push(to, amount); } function _mintPoolShare(uint256 amount) internal { _mint(amount); } function _burnPoolShare(uint256 amount) internal { _burn(amount); } }
// SPDX-License-Identifier: UNLICENSED // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BNum.sol"; // Highly opinionated token implementation interface BIERC20 { function totalSupply() external view returns (uint256); function balanceOf(address whom) external view returns (uint256); function allowance(address src, address dst) external view returns (uint256); function approve(address dst, uint256 amt) external returns (bool); function transfer(address dst, uint256 amt) external returns (bool); function transferFrom( address src, address dst, uint256 amt ) external returns (bool); } contract BTokenBase is BNum { mapping(address => uint256) internal _balance; mapping(address => mapping(address => uint256)) internal _allowance; uint256 internal _totalSupply; event Approval(address indexed src, address indexed dst, uint256 amt); event Transfer(address indexed src, address indexed dst, uint256 amt); function _mint(uint256 amt) internal { _balance[address(this)] = badd(_balance[address(this)], amt); _totalSupply = badd(_totalSupply, amt); emit Transfer(address(0), address(this), amt); } function _burn(uint256 amt) internal { require(_balance[address(this)] >= amt, "ERR_INSUFFICIENT_BAL"); _balance[address(this)] = bsub(_balance[address(this)], amt); _totalSupply = bsub(_totalSupply, amt); emit Transfer(address(this), address(0), amt); } function _move( address src, address dst, uint256 amt ) internal { require(_balance[src] >= amt, "ERR_INSUFFICIENT_BAL"); _balance[src] = bsub(_balance[src], amt); _balance[dst] = badd(_balance[dst], amt); emit Transfer(src, dst, amt); } function _push(address to, uint256 amt) internal { _move(address(this), to, amt); } function _pull(address from, uint256 amt) internal { _move(from, address(this), amt); } } contract BToken is BTokenBase, BIERC20 { string private _name = "Balancer Pool Token"; string private _symbol = "BPT"; uint8 private _decimals = 18; function name() public view returns (string memory) { return _name; } function symbol() public view returns (string memory) { return _symbol; } function decimals() public view returns (uint8) { return _decimals; } function allowance(address src, address dst) external view override returns (uint256) { return _allowance[src][dst]; } function balanceOf(address whom) external view override returns (uint256) { return _balance[whom]; } function totalSupply() public view override returns (uint256) { return _totalSupply; } function approve(address dst, uint256 amt) external override returns (bool) { _allowance[msg.sender][dst] = amt; emit Approval(msg.sender, dst, amt); return true; } function increaseApproval(address dst, uint256 amt) external returns (bool) { _allowance[msg.sender][dst] = badd(_allowance[msg.sender][dst], amt); emit Approval(msg.sender, dst, _allowance[msg.sender][dst]); return true; } function decreaseApproval(address dst, uint256 amt) external returns (bool) { uint256 oldValue = _allowance[msg.sender][dst]; if (amt > oldValue) { _allowance[msg.sender][dst] = 0; } else { _allowance[msg.sender][dst] = bsub(oldValue, amt); } emit Approval(msg.sender, dst, _allowance[msg.sender][dst]); return true; } function transfer(address dst, uint256 amt) external override returns (bool) { _move(msg.sender, dst, amt); return true; } function transferFrom( address src, address dst, uint256 amt ) external override returns (bool) { require( msg.sender == src || amt <= _allowance[src][msg.sender], "ERR_BTOKEN_BAD_CALLER" ); _move(src, dst, amt); if (msg.sender != src && _allowance[src][msg.sender] != uint256(-1)) { _allowance[src][msg.sender] = bsub( _allowance[src][msg.sender], amt ); emit Approval(msg.sender, dst, _allowance[src][msg.sender]); } return true; } }
//SPDX-License-Identifier: Unlicense pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "../Ownable.sol"; enum PriceSource { FIXED_ETH, /// implies the fixedPrice is a constant multiple of the ETH price (which varies) FIXED_USD, /// implies the fixedPrice is a constant multiple of the USD price (which is 1) REPORTER /// implies the price is set by the reporter } struct TokenConfig { address cToken; address underlying; bytes32 symbolHash; uint256 baseUnit; PriceSource priceSource; uint256 fixedPrice; address uniswapMarket; bool isUniswapReversed; } interface UniswapAnchoredView { function price(string calldata symbol) external view returns (uint256); function getTokenConfigBySymbol(string memory symbol) external view returns (TokenConfig memory); } contract DummyUniswapAnchoredView is Ownable, UniswapAnchoredView { mapping(string => uint256) private prices; mapping(string => TokenConfig) private tokenConfigs; mapping(string => bool) public tokenRegistered; function addToken(string memory symbol, TokenConfig memory config) public onlyOwner { tokenRegistered[symbol] = true; tokenConfigs[symbol] = config; } function setPrice(string memory symbol, uint256 _price) public onlyOwner { require(tokenRegistered[symbol], "symbol not registered"); prices[symbol] = _price; } function price(string calldata symbol) external view override returns (uint256) { return prices[symbol]; } function getTokenConfigBySymbol(string memory symbol) external view override returns (TokenConfig memory) { return tokenConfigs[symbol]; } }
{ "evmVersion": "istanbul", "libraries": {}, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 200 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address[]","name":"bpAddresses","type":"address[]"},{"indexed":true,"internalType":"uint256[]","name":"bpAmounts","type":"uint256[]"}],"name":"UnderlyingTokensDeposited","type":"event"},{"inputs":[{"internalType":"address","name":"_poolAddress","type":"address"}],"name":"addPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"allTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokensIn","type":"address[]"},{"internalType":"uint256[]","name":"_amountsIn","type":"uint256[]"}],"name":"deposit","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokensIn","type":"address[]"},{"internalType":"uint256[]","name":"_amountsIn","type":"uint256[]"}],"name":"estimateDeposit","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokensOut","type":"address[]"},{"internalType":"uint256[]","name":"_amountsOut","type":"uint256[]"}],"name":"estimateWithdraw","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initializeOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"pools","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokens","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"_tokensOut","type":"address[]"},{"internalType":"uint256[]","name":"_amountsOut","type":"uint256[]"}],"name":"withdraw","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b50611e31806100206000396000f3fe608060405234801561001057600080fd5b50600436106100b45760003560e01c80639f69b83e116100715780639f69b83e14610190578063c66ca5fb1461034c578063d914cd4b1461046f578063de6d6d9614610495578063efc908a1146105b8578063f2fde38b146106db576100b4565b80634f64b2be146100b95780635f53837f146100f25780636ff97f1d146100fc578063715018a6146101545780638da5cb5b1461015c5780638f38a55514610164575b600080fd5b6100d6600480360360208110156100cf57600080fd5b5035610701565b604080516001600160a01b039092168252519081900360200190f35b6100fa61072b565b005b61010461079d565b60408051602080825283518183015283519192839290830191858101910280838360005b83811015610140578181015183820152602001610128565b505050509050019250505060405180910390f35b6100fa610853565b6100d66108fc565b6100d66004803603604081101561017a57600080fd5b506001600160a01b03813516906020013561090b565b6102b3600480360360408110156101a657600080fd5b810190602081018135600160201b8111156101c057600080fd5b8201836020820111156101d257600080fd5b803590602001918460208302840111600160201b831117156101f357600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295949360208101935035915050600160201b81111561024257600080fd5b82018360208201111561025457600080fd5b803590602001918460208302840111600160201b8311171561027557600080fd5b919080806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250929550610943945050505050565b604051808060200180602001838103835285818151815260200191508051906020019060200280838360005b838110156102f75781810151838201526020016102df565b50505050905001838103825284818151815260200191508051906020019060200280838360005b8381101561033657818101518382015260200161031e565b5050505090500194505050505060405180910390f35b6102b36004803603604081101561036257600080fd5b810190602081018135600160201b81111561037c57600080fd5b82018360208201111561038e57600080fd5b803590602001918460208302840111600160201b831117156103af57600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295949360208101935035915050600160201b8111156103fe57600080fd5b82018360208201111561041057600080fd5b803590602001918460208302840111600160201b8311171561043157600080fd5b919080806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250929550610a8e945050505050565b6100fa6004803603602081101561048557600080fd5b50356001600160a01b0316610bcd565b6102b3600480360360408110156104ab57600080fd5b810190602081018135600160201b8111156104c557600080fd5b8201836020820111156104d757600080fd5b803590602001918460208302840111600160201b831117156104f857600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295949360208101935035915050600160201b81111561054757600080fd5b82018360208201111561055957600080fd5b803590602001918460208302840111600160201b8311171561057a57600080fd5b919080806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250929550610f8c945050505050565b6102b3600480360360408110156105ce57600080fd5b810190602081018135600160201b8111156105e857600080fd5b8201836020820111156105fa57600080fd5b803590602001918460208302840111600160201b8311171561061b57600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295949360208101935035915050600160201b81111561066a57600080fd5b82018360208201111561067c57600080fd5b803590602001918460208302840111600160201b8311171561069d57600080fd5b919080806020026020016040519081016040528093929190818152602001838360200280828437600092019190915250929550611208945050505050565b6100fa600480360360208110156106f157600080fd5b50356001600160a01b031661160b565b6002818154811061071157600080fd5b6000918252602090912001546001600160a01b0316905081565b6000546001600160a01b031615610789576040805162461bcd60e51b815260206004820152601960248201527f6f776e657220616c726561647920696e697469616c697a656400000000000000604482015290519081900360640190fd5b600080546001600160a01b03191633179055565b60025460609060009067ffffffffffffffff811180156107bc57600080fd5b506040519080825280602002602001820160405280156107e6578160200160208202803683370190505b50905060005b60025481101561084d576002818154811061080357fe5b9060005260206000200160009054906101000a90046001600160a01b031682828151811061082d57fe5b6001600160a01b03909216602092830291909101909101526001016107ec565b50905090565b6000546001600160a01b031633146108b2576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a3600080546001600160a01b0319169055565b6000546001600160a01b031690565b6001602052816000526040600020818154811061092757600080fd5b6000918252602090912001546001600160a01b03169150829050565b6060806000845167ffffffffffffffff8111801561096057600080fd5b5060405190808252806020026020018201604052801561098a578160200160208202803683370190505b5090506000845167ffffffffffffffff811180156109a757600080fd5b506040519080825280602002602001820160405280156109d1578160200160208202803683370190505b50905060005b8651811015610a825760008782815181106109ee57fe5b602002602001015190506000878381518110610a0657fe5b602002602001015190506000610a1c838361170a565b90506000610a2b82858561179f565b905081878681518110610a3a57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505080868681518110610a6757fe5b60209081029190910101525050600190920191506109d79050565b50909590945092505050565b6060806000845167ffffffffffffffff81118015610aab57600080fd5b50604051908082528060200260200182016040528015610ad5578160200160208202803683370190505b5090506000845167ffffffffffffffff81118015610af257600080fd5b50604051908082528060200260200182016040528015610b1c578160200160208202803683370190505b50905060005b8651811015610a82576000878281518110610b3957fe5b602002602001015190506000878381518110610b5157fe5b602002602001015190506000610b67838361170a565b90506000610b76828585611a94565b905081878681518110610b8557fe5b60200260200101906001600160a01b031690816001600160a01b03168152505080868681518110610bb257fe5b6020908102919091010152505060019092019150610b229050565b6000546001600160a01b03163314610c2c576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b6000819050806001600160a01b0316638d4e40836040518163ffffffff1660e01b815260040160206040518083038186803b158015610c6a57600080fd5b505afa158015610c7e573d6000803e3d6000fd5b505050506040513d6020811015610c9457600080fd5b5051610ce7576040805162461bcd60e51b815260206004820152601c60248201527f63616e206f6e6c79206164642066696e616c697a656420706f6f6c7300000000604482015290519081900360640190fd5b6000816001600160a01b031663be3bbd2e6040518163ffffffff1660e01b815260040160006040518083038186803b158015610d2257600080fd5b505afa158015610d36573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526020811015610d5f57600080fd5b8101908080516040519392919084600160201b821115610d7e57600080fd5b908301906020820185811115610d9357600080fd5b82518660208202830111600160201b82111715610daf57600080fd5b82525081516020918201928201910280838360005b83811015610ddc578181015183820152602001610dc4565b50505050905001604052505050905060005b8151811015610f86576000828281518110610e0557fe5b6020908102919091018101516001600160a01b038116600090815260019092526040909120805491925090610e8057600280546001810182556000919091527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace0180546001600160a01b0319166001600160a01b0384161790555b6000805b8254811015610ecf57876001600160a01b0316838281548110610ea357fe5b6000918252602090912001546001600160a01b03161415610ec75760019150610ecf565b600101610e84565b5080610f7b5781546001810183556000838152602080822090920180546001600160a01b0319166001600160a01b038b81169182179092556040805163095ea7b360e01b815260048101929092526000196024830152519187169363095ea7b39360448084019492938390030190829087803b158015610f4e57600080fd5b505af1158015610f62573d6000803e3d6000fd5b505050506040513d6020811015610f7857600080fd5b50505b505050600101610dee565b50505050565b60608060005b84518110156111ff576000858281518110610fa957fe5b602002602001015190506000858381518110610fc157fe5b602002602001015190506000610fd7838361170a565b90506000610fe6828585611a94565b604080516323b872dd60e01b81523360048201523060248201526044810183905290519192506000916001600160a01b038516916323b872dd91606480830192602092919082900301818787803b15801561104057600080fd5b505af1158015611054573d6000803e3d6000fd5b505050506040513d602081101561106a57600080fd5b50519050806110aa5760405162461bcd60e51b8152600401808060200182810382526030815260200180611daa6030913960400191505060405180910390fd5b826001600160a01b03166302c967488686856040518463ffffffff1660e01b815260040180846001600160a01b031681526020018381526020018281526020019350505050602060405180830381600087803b15801561110957600080fd5b505af115801561111d573d6000803e3d6000fd5b505050506040513d602081101561113357600080fd5b50506040805163a9059cbb60e01b81523360048201526024810186905290516001600160a01b0387169163a9059cbb9160448083019260209291908290030181600087803b15801561118457600080fd5b505af1158015611198573d6000803e3d6000fd5b505050506040513d60208110156111ae57600080fd5b50519050806111ee5760405162461bcd60e51b8152600401808060200182810382526022815260200180611dda6022913960400191505060405180910390fd5b505060019093019250610f92915050565b50929391925050565b6060806000845167ffffffffffffffff8111801561122557600080fd5b5060405190808252806020026020018201604052801561124f578160200160208202803683370190505b5090506000845167ffffffffffffffff8111801561126c57600080fd5b50604051908082528060200260200182016040528015611296578160200160208202803683370190505b50905060005b86518110156115565760008782815181106112b357fe5b6020026020010151905060008783815181106112cb57fe5b602090810291909101810151604080516323b872dd60e01b81523360048201523060248201526044810183905290519193506000926001600160a01b038616926323b872dd92606480820193929182900301818787803b15801561132e57600080fd5b505af1158015611342573d6000803e3d6000fd5b505050506040513d602081101561135857600080fd5b50519050806113985760405162461bcd60e51b8152600401808060200182810382526033815260200180611d516033913960400191505060405180910390fd5b60006113a4848461170a565b90506000816001600160a01b0316635db34277868660006040518463ffffffff1660e01b815260040180846001600160a01b031681526020018381526020018281526020019350505050602060405180830381600087803b15801561140857600080fd5b505af115801561141c573d6000803e3d6000fd5b505050506040513d602081101561143257600080fd5b50516040805163a9059cbb60e01b81523360048201526024810183905290519192506001600160a01b0384169163a9059cbb916044808201926020929091908290030181600087803b15801561148757600080fd5b505af115801561149b573d6000803e3d6000fd5b505050506040513d60208110156114b157600080fd5b5051925082611507576040805162461bcd60e51b815260206004820181905260248201527f6661696c656420746f207472616e736665722042505420746f2073656e646572604482015290519081900360640190fd5b8087878151811061151457fe5b6020026020010181815250508188878151811061152d57fe5b6001600160a01b039092166020928302919091019091015250506001909301925061129c915050565b508060405180828051906020019060200280838360005b8381101561158557818101518382015260200161156d565b5050505090500191505060405180910390208260405180828051906020019060200280838360005b838110156115c55781810151838201526020016115ad565b505060405194909201849003842095507f750b6a9d34dda1877521e68ec5e0b61664b84eb7d491399df3ae581ce6b9f0ff945060009392505050a3909590945092505050565b6000546001600160a01b0316331461166a576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b6001600160a01b0381166116af5760405162461bcd60e51b8152600401808060200182810382526026815260200180611d846026913960400191505060405180910390fd5b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a3600080546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b0382166000908152600160205260408120805461176b576040805162461bcd60e51b81526020600482015260136024820152721d1bdad95b881b9bdd081cdd5c1c1bdc9d1959606a1b604482015290519081900360640190fd5b80548190848161177757fe5b068154811061178257fe5b6000918252602090912001546001600160a01b0316949350505050565b600080846001600160a01b031663f8b2cb4f856040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b1580156117ef57600080fd5b505afa158015611803573d6000803e3d6000fd5b505050506040513d602081101561181957600080fd5b505160408051634a46c67360e11b81526001600160a01b03878116600483015291519293506000929188169163948d8ce691602480820192602092909190829003018186803b15801561186b57600080fd5b505afa15801561187f573d6000803e3d6000fd5b505050506040513d602081101561189557600080fd5b5051604080516318160ddd60e01b815290519192506000916001600160a01b038916916318160ddd916004808301926020929190829003018186803b1580156118dd57600080fd5b505afa1580156118f1573d6000803e3d6000fd5b505050506040513d602081101561190757600080fd5b50516040805163936c347760e01b815290519192506000916001600160a01b038a169163936c3477916004808301926020929190829003018186803b15801561194f57600080fd5b505afa158015611963573d6000803e3d6000fd5b505050506040513d602081101561197957600080fd5b505160408051631a995bed60e31b815290519192506000916001600160a01b038b169163d4cadf68916004808301926020929190829003018186803b1580156119c157600080fd5b505afa1580156119d5573d6000803e3d6000fd5b505050506040513d60208110156119eb57600080fd5b505160408051638656b65360e01b815260048101889052602481018790526044810186905260648101859052608481018a905260a4810183905290519192506001600160a01b038b1691638656b6539160c480820192602092909190829003018186803b158015611a5b57600080fd5b505afa158015611a6f573d6000803e3d6000fd5b505050506040513d6020811015611a8557600080fd5b50519998505050505050505050565b600080846001600160a01b031663f8b2cb4f856040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b158015611ae457600080fd5b505afa158015611af8573d6000803e3d6000fd5b505050506040513d6020811015611b0e57600080fd5b505160408051634a46c67360e11b81526001600160a01b03878116600483015291519293506000929188169163948d8ce691602480820192602092909190829003018186803b158015611b6057600080fd5b505afa158015611b74573d6000803e3d6000fd5b505050506040513d6020811015611b8a57600080fd5b5051604080516318160ddd60e01b815290519192506000916001600160a01b038916916318160ddd916004808301926020929190829003018186803b158015611bd257600080fd5b505afa158015611be6573d6000803e3d6000fd5b505050506040513d6020811015611bfc57600080fd5b50516040805163936c347760e01b815290519192506000916001600160a01b038a169163936c3477916004808301926020929190829003018186803b158015611c4457600080fd5b505afa158015611c58573d6000803e3d6000fd5b505050506040513d6020811015611c6e57600080fd5b505160408051631a995bed60e31b815290519192506000916001600160a01b038b169163d4cadf68916004808301926020929190829003018186803b158015611cb657600080fd5b505afa158015611cca573d6000803e3d6000fd5b505050506040513d6020811015611ce057600080fd5b5051604080516382f652ad60e01b815260048101889052602481018790526044810186905260648101859052608481018a905260a4810183905290519192506001600160a01b038b16916382f652ad9160c480820192602092909190829003018186803b158015611a5b57600080fdfe6661696c656420746f207472616e7366657220746f6b656e732066726f6d2073656e64657220746f204772796f526f757465724f776e61626c653a206e6577206f776e657220697320746865207a65726f20616464726573736661696c656420746f207472616e73666572204250542066726f6d2073656e64657220746f204772796f526f757465726661696c656420746f207472616e7366657220746f6b656e20746f2073656e646572a2646970667358221220fe617f55a35f4304f39a0ba702ece8d124066c56748424cc12576e98e519121564736f6c63430007060033
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.